• Title/Summary/Keyword: 촬영장치

Search Result 700, Processing Time 0.029 seconds

Actual condition on accuracy control of mammography equipment in Kyeongsangbuk-do (경상북도 유방촬영장비의 정도관리에 대한 실태조사)

  • Kim, Sang-Jin;Ji, Tae-Jeong
    • Journal of radiological science and technology
    • /
    • v.29 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • The breast cancer has the highest occurrence rate among the female cancers, and as the living style changes, the occurrence is increasing gradually. For the breast cancer test among women, who comprises up to 50% of the total population, the mammography is mainly used as the screening test, and the accuracy control is the most important aspect of the testing. Therefore this research divided the northern part of Kyeongsangbuk-do into 4 regions and investigated the accordance ratio of examination field and light examination field, the total focus using the optical density and compression rate, and the overall maintenance of mammography within the regions. The equipments of 11 hospitals were investigated, and the 7 hospitals passed the standard level of the accordance ratio of examination field. 6 hospitals passed the standard optical density, and 7 hospitals had the passing performance in the compression rate. Fibers, group of specks, and masses within the Mammographic Accreditation Phantom scored 10, being within the standard range. However, only 3 hospitals were equipped with private development processor and illumination. The result reflects the fact that the image quality of breast is not correctly being maintained. Moreover, only 27.27% satisfied all the three categories of compression fitting, accordance ratio of examination field, and phantom image evaluation at the same time. The accuracy control must be maintained more precisely for the accurate diagnosis of breast cancer.

  • PDF

Auto-Positioning of Patient in X-ray Diagnostic Imaging (진단 엑스선 영상에서 환자 위치잡이의 자동화)

  • Yang, Won Seok;Son, Jung Min;Kwon, Su Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.793-799
    • /
    • 2018
  • As interest in artificial intelligence has increased, artificial intelligence has been actively studied in the medical field. In Korea, artificial intelligence has been applied to medical imaging devices such as X-ray imaging, Computer Tomography and Magnetic Resonance Imaging and artificial intelligence capable of acquiring radiation images of patients without radiologists in the future Medical devices are expected to be invented. This study was an initial study on the automation of patient positioning in X - ray imaging. We used x-ray equipment and human phantoms to evaluate the positioning. The program used Visual Studio 2010 MFC and the image was in the size $1450{\times}1814$. The pixel values were converted to contrasts with values of 0 to 255 that can be visually recognized and output to the monitor. We developed a procedure algorithm program that predicts the angle of the output image through three pixel coordinate values and induces the patient to perform correct positioning according to the voice guidance according to the angle. In the next study, we will study the artificial intelligence to grasp the structure itself and calculate the angle, rather than conveying the reference of coordinates to artificial intelligence. In the future, it is expected that it will be helpful in the study of artificial intelligence from shooting to positioning through the automation of positioning.

A Study on the Accuracy Evaluation of UAV Photogrammetry using Oblique and Vertical Images (연직사진과 경사사진을 함께 이용한 UAV 사진측량의 정확도 평가 연구)

  • Cho, Jungmin;Lee, Jongseok;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.41-46
    • /
    • 2021
  • As data acquisition using unmanned aerial vehicles is widely used, as one of the ways to increase the accuracy of photogrammetry using unmanned aerial vehicles, a method of inputting both vertical and oblique images in bundle adjustment of aerial triangulation has been proposed. In this study, in order to find a suitable method for increasing the accuracy of photogrammetry, the accuracy of the case of adjusting the oblique images taken at different shooting angles and the case of adjusting the oblique images with different shooting angles at the same time with the vertical images were compared. As a result of the study, it was found that the error of the checkpoint decreases as the angle of the input oblique images increases. In particular, when the vertical images and oblique images are used together, the height error decreases significantly as the angle of the oblique images increases. The current 『Aerial Photogrammetry Work Regulation』 requires RMSE (Root Mean Square Error), which is the same as GSD (Ground Spatial Distance) of a vertical image. When using an oblique images with a shooting angle of 50°, a result close to this standard is obtained. If the vertical images and the 50° oblique images were adjusted at the same time, the work regulations could be satisfied. Using the results of this study, it is expected that photogrammetry using low-cost cameras mounted on unmanned aerial vehicles will become more active.

Analysis of the Influence of Examination Gowns on the Image and the Suitable Fabrics for Chest AP Examinations on DR X-ray Systems (디지털 X-선 시스템에서 흉부 전·후 방향 검사 시 검사복이 영상에 미치는 영향과 적정 검사복 원단의 분석)

  • Eun-Bi Baek;Yoo-Jin Jeong;Su-Bin Lim;Sang-Jo Park;Yeong-Cheol Heo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.865-872
    • /
    • 2023
  • The purpose of this study was to analyze fabrics suitable for use as examination gowns to determine whether examination gowns affect imaging during anterior to posterior chest examinations(Chest AP) on a digital X-ray system. Examination gowns in use at five medical centers in Seoul were collected and included modal, tencel, cotton, and rayon fabrics. The selection of fabrics was based on studies that reported fabrics with good tactile, absorbent, stretchable, and wrinkle resistance. Phantoms of five hospital gowns and four fabrics, arranged in overlapping layers from one to eight, were created and examined on a digital X-ray system in both Chest AP examination. The images examined were subjected to a first-step profile analysis, a second-step signal intensity averaging analysis, and a third-step microscopic analysis. The results showed that all nine materials had an increasing impact on the image as the number of layers of fabric increased, with the modal fabric having the least impact on the image in the first, second, and third analyses. In conclusion, as the resolution of digital x-ray systems increases, the impact of examination clothing on the image will increase, and research to find suitable materials for examination clothing will continue to be necessary.

A three-dimensional finite element analysis of obturator prosthesis for edentulous maxilla (무치악 구개결손 환자를 위한 폐쇄장치의 삼차원 유한요소 분석)

  • Song, Woo-Seok;Kim, Myung-Joo;Lim, Young-Jun;Kwon, Ho-Beom
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.3
    • /
    • pp.222-228
    • /
    • 2011
  • Purpose: The purposes of this study were to evaluate the stress distributions and the displacements of obturator for edentulous maxillectomy patients and to compare them with those of complete denture using three-dimensional finite element analysis. Materials and methods: Based on the CT image of edentulous patient, three-dimensional finite element model of edentulous maxillae was constructed. Three-dimensional finite element model of edentulous maxillae with palatal defect was also fabricated. On each model, complete denture and obturator prosthesis were created. Vertical static force of 200 N was applied on the left maxillary premolar and molar region. The von Mises stress values and the displacements of models were analyzed using three-dimensional finite element analysis. Results: Maximum von Mises stress values were recorded in the cortical bones of both models. The von Mises stress value in the complete denture model was 2.73 MPa and 2.69 MPa in the obturator model. High von Mises stress values were also observed on the tissue surface of prosthesis. The maximum value of the displacement in the obturator was higher than that of complete denture. Conclusion: The obturator showed a worse result in terms of stress distribution and displacement than complete denture. In the prosthodontic rehabilitation of edentulous maxillectomy patient accurate impression procedure based on patients'anatomy and application of prosthodontic principle should be considered.

Visualization Study of Wave Generation in Short-Distance Wave Maker (소형 조파기 내의 조파생성에 대한 가시화연구)

  • Jung, Eui-Chul;Yuan, Zhen-Zhong;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.293-300
    • /
    • 2013
  • This study used a water tank and wave maker to generate conditions similar to the real ocean environment. Given that the waves were properly generated in the water tank, a precise analysis indicated the quantitative value of the wave force acting on a body. A high-speed camera and wave-level gauge were used to measure the temporal wave motion and period. A series of artificial water waves were successfully generated using three different wave periods and amplitudes. Each of the waves captured by a high-speed camera was sinusoidal and did not maintain its shape properly without a wave absorber, but it was substantially improved and well shaped when the wave absorber was installed.

A study on the digital image transfer application mass chest X-ray system up-grade (간접촬영기의 디지털 영상 변환 장치 적용에 대한 연구)

  • Kim, Sun-Chil;Park, Jong-Sam;Lee, Jon-Il
    • Journal of radiological science and technology
    • /
    • v.26 no.3
    • /
    • pp.13-17
    • /
    • 2003
  • By converting movable indirect mass chest X-ray devices for vehicles into digital systems and upgrading it to share information with the hospital's medical image information system, excellencies have been confirmed as a result of installing and running this type of system and are listed hereinafter. 1. Upgrading analog systems, such as indirect mass chest X-ray devices dependent on printed film, to digital systems allows them to be run and managed much more efficiently, contributing to the increase in the stability and the efficiency of the system. 2. Unlike existing images, communication based on DICOM standards allow images to be compatible with the hospital's outer and inner network PACS systems, extending the scope of the radiation departments information system. 3. Assuming chest-exclusive indirect mass chest X-rays, a linked development of CAD (Computer Aided Diagnosis, Detector) becomes possible. 4. By applying wireless Internet, Web-PACS for movable indirect mass chest X-ray devices for vehicles will become possible. Research in these fields must continue and if the superior image quality and convenience of digital systems are confirmed, I believe that the conversion of systems still dependent on analog images to modernized digital systems is a must.

  • PDF

Basic RF Coils Used in Multi-channel RF Coil and Its B1 Field Distribution for Magnetic Resonance Imaging System (자기공명영상 촬영 장치에서 다채널 RF Coil에 이용되는 기본 구조 RF Coil의 B1 Field 분석)

  • Kim, Yong-Gwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4891-4895
    • /
    • 2010
  • RF coil is an important component of the Magnetic Resonance Imaging (MRI) system and the performance of RF coil is one of major factors for high SNR images. Sensitivity and RF field uniformity are parameters for evaluating RF coil performance. Since the B1 field is induced by RF coil, MR signal is strongly affected by RF coil structure and arrangement. In receiving MR signal, the RF coil sensitivity to MR Signal is also determined by the induced B1 field of RF coil. Therefore, the spatial distribution of B1 field must be verified. In this work, we performed computer simulation of the basic RF coil structures using Matlab and verified their sensitivity and uniformity through their B1 field distribution. This work will be useful for the advanced multi-channel RF coil design.

An image enhancement algorithm for detecting the license plate region using the image of the car personal recorder (차량 번호판 검출을 위한 자동차 개인 저장 장치 이미지 향상 알고리즘)

  • Yun, Jong-Ho;Choi, Myung-Ryul;Lee, Sang-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.1-8
    • /
    • 2016
  • We propose an adaptive histogram stretching algorithm for application to a car's personal recorder. The algorithm was used for pre-processing to detect the license plate region in an image from a personal recorder. The algorithm employs a Probability Density Function (PDF) and Cumulative Distribution Function (CDF) to analyze the distribution diagram of the images. These two functions are calculated using an image obtained by sampling at a certain pixel interval. The images were subjected to different levels of stretching, and experiments were done on the images to extract their characteristics. The results show that the proposed algorithm provides less deterioration than conventional algorithms. Moreover, contrast is enhanced according to the characteristics of the image. The algorithm could provide better performance than existing algorithms in applications for detecting search regions for license plates.

On-site Performance Evaluation of a Vision-based Displacement Measurement System (영상 기반 변위 계측장치의 현장 적용 성능 평가)

  • Cho, Soojin;Sim, Sung-Han;Kim, Eunsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5854-5860
    • /
    • 2014
  • The on-site performance of a vision-based displacement measurement system (VDMS) was evaluated through a field test on a bridge. The VDMS used in this study is composed of a camera, a marker, a frame grabber, and a laptop. The system measures the displacement by attaching a marker at the location to be measured on the structure, by capturing images of that marker with a fixed rate, and by processing a series of images using a planar homography technique. The developed system was first validated from a laboratory test using a small-scale building structure. The VDMS was then employed in a field test on a railroad bridge with a KTX train running under various conditions. The on-site performance was evaluated by comparing the obtained displacement using the VDMS with the displacement measured from a laser Doppler vibrometer (LDV), which is an expensive and accurate displacement measurement device.