• Title/Summary/Keyword: 총당

Search Result 426, Processing Time 0.025 seconds

Physicochemical Characteristics of Ethanol Extracts from Each Part of the Pleurotus eryngii (새송이버섯(Pleurotus eryngii) 부위별 추출물의 이화학적 특성)

  • Ahn, Myung-Soo;Kim, Hyun-Jeung;Seo, Mi-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.3
    • /
    • pp.297-302
    • /
    • 2006
  • This study has examined the physicochemical properties of the Pleurotus eryngii, including their proximate components, amount mineral content, total dietary fiber, total sugar, reducing sugar and free sugar. Additionally, it measured the P. egii ethanol extracts and the total amounts of polyphenol compounds as well as its electron donating ability (EDA) of the substance fraction (SF). The P. eryngii powder's moisture content was 9.0% and each of the other element content such as carbohydrate, crude protein, crude ash and crude fat was found to be 63.06%, 20.70%, 5.20% and 2.0% respectively. Potassium (K) was shown to be the greatest inorganic content and manganese (Mn) was the lowest. Furthermore fructose, galactose, glucose lactose and maltose free sugar content was found in this order. 387 mg% of the total amounts of polyphenol was found in the P. eryngii whole body ethanol extract, 158 mg% in the stipe extract, 593 mg% in the pileus extract and 607 mg% in the substance fraction (SF). Electron donating ability (EDA) was highest at 91.12% in the whole body extract and lowest at 62.90% in the stipe extract. Additionally, the EDA for substance fraction (SF) 0.02%-0.1% was found to be 57.78-77.33%, which was lower than the 0.02%-tocopherol (93.92%) and BHT (96.72%). From these results, it can be assumed that P. eryngii offers superior antioxidative effects with its high content of fiber, inorganic materials and total amounts of polyphenol as well as high electron donating ability (EDA), thereby making it ideal for use in functional foods and industrial materials.

Characteristics and Sensory Optimization of Taro (Colocasia esculenta) under Different Aging Conditions for Food Application of Black Taro (흑토란의 식품재료화를 위한 숙성 조건에 따른 토란의 특성 및 관능 최적화)

  • Jeon, Yu-Ho;Lee, Ji-Won;Son, Yang-Ju;Hwang, In-Kyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.133-141
    • /
    • 2016
  • The physicochemical properties, antioxidant capacities, and sensory optimization of taro (Colocasia esculenta) under different aging conditions were investigated to develop black taro. Black taro was processed in three steps (steaming: $95{\pm}3^{\circ}C$ for 1 h; aging: 85, 90, $95^{\circ}C$ for 20, 40, and 60 h; drying: $60^{\circ}C$ for 24 h) and ground into a powder for all experiments. Black taro showed an increased crude fiber content and browning index compared to raw taro. Calcium oxalate contents, reducing sugar contents, moisture contents, and lightness values were decreased during the processing of taro. Improvements in total polyphenol content and antioxidant activity (DPPH, ABTS, FRAP) were observed in the black taro samples aged at higher temperature. Response surface methodology was used for sensory optimization, and the optimum aging conditions with the highest acceptance values were found to be $88.73^{\circ}C$ for 39.50 h for taste, and $88.82^{\circ}C$ for 42.60 h for overall acceptance.

Studies on the Browning of Red Ginseng (홍삼(紅蔘)의 갈변(褐變)에 관(關)한 연구(硏究))

  • Kim, Dong-Youn
    • Applied Biological Chemistry
    • /
    • v.16 no.2
    • /
    • pp.60-77
    • /
    • 1973
  • The non-enzymatic browning phenomenons of red ginseng were studied to identify these compounds which function as the factors for browning. The samples were classified into five divisions; Fresh ginseng, blanched ginseng, sun dried red ginseng, dehydrated red ginseng, and browning accelerated red ginseng respectively, and the various compounds in each of them were analyzed quantitatively and investigated the compounds which were thought to function for browning during the drying and the dehydration processes; the results were as follows. 1. The chemical compositions among five divisions did not show any difference except a) total and reducing sugars, b) total acids, c) water soluble extracts; a) and b) were decreased during the drying process, c) was decreased about 6-7% in red ginseng divisions. 2. Sixteen free amino acids; asp., thr., ser., glu., gly., ala., val., cys., met., ileu., leu., tyr., phe., lys., his., and arg, were identified in each division. Among them the arg, was extremly high. All of the essential amino acids were contained, while generally these amino acids were decreased in drying period and their rates were smaller in dehydrated red ginseng than in sun dried red ginseng. 3. Three kinds of sugars; fructose, glucose and sucrose were identified and other four kinds of unidentified sugars were seperated. The content of sucrose was 80% and all kind of sugars were generally less in red ginseng divisions than in the other two divisions. The decreasing rate of sngars was higher in the sun dried red ginseng than in the dehydrated red ginseng. Especially the decreasing rate of the reducing sugars was high as compared with that of sucrose. 4. Almost all the ascorbic acid was decomposed during the blanching whereas there could'nt be shown any change of the ascorbic acid content during the period of drying. 5. Eleven kinds of volatile acids; acetic acid, propionic acid, acrylic acid, iso-butyric acid, n-butyric acid, isovaleric acid, n-valeric acid, isoheptylic acid, n-heptylic acid, and an unknown volatile acid were identified. They showed a little decrease during the period of blanching perhaps on account of their volatility whereas they were increased in drying period. 6. Six kinds of non-volatile acids; citric acid, malic acid, ${\alpha}-ketoglutaric$ acid, succinic acid, pyruvic acid and glutaric acid were identified. The content of them were decreased during the drying procedures in red ginseng but only that of succinic acid was increased. 7. Three kinds of polyphenols; 3-caffeyl quinic acid, 4-caffeyl quinic acid, 5-caffeyl quinic acid and an unknown polyphenol were identified. The content of them showed considerable decrease during the drying procedures, especially in sun drying. 8. The intensity of the browning in each divisior was as follows; browning accelerated red ginseng> sun dried red ginseng> dehydrated red ginseng. 9. In the process of red ginseng preparation, a. certain relationship could be found between the decreasing rates of amino acids, reducing sugars, polyphenols and the intensity of browning. Therefore the browning phenomenon may be concluded that nonenzymatic browning reactions of the amino-carbonyl reaction and autoxidation of polyphenols are the most important processes, furthermore, as their reactions could be controlled it is thought to be possible to accelerate effectively browning within a relatively short period.

  • PDF

Quality Characteristics of Kiwi Wine and Optimum Malolactic Fermentation Conditions (참다래 와인의 최적 malolactic fermentation 조건과 품질 특성)

  • Kang, Sang-Dong;Ko, Yu-Jin;Kim, Eun-Jung;Son, Yong-Hwi;Kim, Jin-Yong;Seol, Hui-Gyeong;Kim, Ig-Jo;Cho, Hyoun-Kook;Ryu, Chung-Ho
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.509-514
    • /
    • 2011
  • Maloactic fermentation (MLF) occurs after completion of alcoholic fermentation and is mediated by lactic acid bacteria (LAB), mainly Oenococcus oeni. Kiwi wine more than commercial grape wine has the problem of high acidity. Therefore, we investigated the optimal MLF conditions for regulating strong acidity and improving the quality properties of wine fermented with Kiwi fruit cultivated in Korea. For alcohol fermentation, industrial wine yeast Saccharomyces cerevisiae KCCM 12650 strains and LAB, known as MLF strains, were used to alleviate wine acidity. First, the various experimental conditions of Kiwi fruit, initial pH (2.5, 3.5, 4.5), fermenting temperature (20, 25, $30^{\circ}C$), and sugar contents (24 $^{\circ}Brix$), were adjusted, and after the fermentation period, we measured the acidity, pH, and the change in organic acid content by the AOAC method and HPLC analysis. The alcohol content of fermented Kiwi wine was 12.75%. Further, total acidity and pH of Kiwi wine were 0.78% and 3.5, respectively. Total sugar and total polyphenol contents of Kiwi wine were 38.72 mg/ml and 60.18 mg/ml, respectively. With regard to organic acid content, the control contained 0.63 mg/ml of oxalic acid, 2.99 mg/ml of malic acid, and 0.71 mg/ml of lactic acid, whereas MLF wine contained 0.69 mg/ml of oxalic acid, 0.06 mg/ml of malic acid, and 3.12 mg/ml of lactic acid. Kiwi wine had lower malic acid values and total acidity than control after MLF processing. In MLF, the optimum initial pH value and fermentation temperature were 3.5 and $25^{\circ}C$, respectively. Therefore, these studies suggest that establishment of optimal MLF conditions could improve the properties of Kiwi wine manufactured in Korea.

Studies on Takju Brewing with Potatoes (감자를 이용(利用)한 탁주제조(濁酒製造)에 관(關)한 연구(硏究))

  • Kim, S.Y.;Oh, M.J.;Kim, C.J.
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.81-92
    • /
    • 1974
  • In order to prepare the mashing materials for 'Takju', Korean wine, with potatoes, theywere steamed, dryed, and pulverized, and their chemical components were analyzed. As a brewing method of Takju with potatoes, general 2nd stage process with Ipkuk and Bunkuk (enzyme sources), commonly used now, was carried out and the effects of preparing conditions of Ipkuk(koji) with potato flour, mashing materials and brewing conditions on the contents of Takju mash, and of storing time on the contents of Takju, were investigated and the results obtained were summarized as follows, 1. Chemical components of steamed potatoes and potato flour were Moisture; 76.2, 10.8%, Total sugar; 16.1, 69.8%, Reducing sugar; 3.45, 13.4%, Crude protein; 2.1, 11.3%, Total acid; 0.012, 0.023% and Volatile acid; 0.0012, 0.0025% respectively. 2. The most effective preparing conditions of Ipkuk with potato flour were to incubate the potato flour added 40-50% of water for 48 hours by general preparing process of Koji, and liquefying and saccharogenic amylase activities of Ipkuk incubated at above conditions were $D40^{\circ}$ 30' 128 W.V. and 13.2 A.U.. 3. The effects of various brewing conditions on the contents of Takju mashes were as follows; 1) Optimum ratio of mashing water and materials for Takju brewing with potato flour was 140ml of water to 60g of flour in 1st stage and 260ml to 140g in 2nd stage. 2) Optimum fermentating times and temperatures for Takju brewing were at $25^{\circ}C$ for 48 hours in 1st stage and at $30^{\circ}C$ for 48 hours in 2nd stage. 3) Optimum amounts of enzyme sources for Takju brewing were 20-30% of Ipkuk and 0.5% of Bunkuk in 1st stage and 1.0% of Bunkuk in 2nd stage. 4) Methanol content of the Takju mash brewed with raw potato flour was much more than that with steamed potato flour. 5) Alcohol, fusel oil and Formol nitrogen contents of the Takju mash brewed with potato flour were less than that with wheat flour, on the contrary, methanol contents and total acidifies of them were showed conversely above. 4. The changes of chemical components and microflora in the mashes during the brewing potato flour Takju were as follows; 1) The accumulation of ethanol followed rapidly in early stage, being the highest at 72 hours (11.9%). 2) Total sugar content of the mash was decreased considerably within 48-72 hours, being 2.62% at 72 hours, and thereafter slowly. 3) Reducing sugar of the mash had a tendency of decreasing, being 0.29% at 48 hours. 4) Total acidity, volatile acidity and Formol nitrogen content of the mash were increased slowly, being 7.30, 0.20, 2.55 at 48 hours. 5) Total cells of yeast appeared the highest in 72 hours ($2.1{\times}10^8$) and thereafter decreased slowly. 6) Total cells of bacteria appeared the highest in 48 hours ($2.4{\times}10^8$) and thereafter decreased or increased slightly. 5. Takju was made from the fermented mash mixed with water to be 6% of alcohol content, and the change of alcohol content, total acidity, total cells of yeast and bacteria during the storing at $30^{\circ}C$ were as follows; 1) Alcohol content of Takju was increased slightly at 24 hours (6.2%), and thereafter decreased slowly. 2) Total acidity of Takju was increased gradually, being 6.1 at 72 hours 3) Total cells of yeast and bacteria appeared the highest at 48 hours ($2.3{\times}10^8,\;1.5{\times}10^8$), and thereafter decreased slowly. 6. Alcohol content, total acidity and Formol nitrogen content of the Takju brewed with potato flour Ipkuk or wheat flour Ipkuk and steamed potatoes(1:5) were 9.8-11.3%, 5.8-7.4, 2.5-3.3 respectively, and the color of the Takju. was similar to commercial Takju. 7. The results of sensory test for various experimental Takju, showed that the Takjues brewed with the materials combined with wheat flour and steamed potatoes(4:5 or 3.5:7.5) were not significantly different in color, taste and flavor from commercial Takju, However, those with potato flour and wheat flour (1:1 or 7:3) were significantly different from commercial Takju.

  • PDF

Studies on Takju Brewing with Potatoes (감자를 이용(利用)한 탁주제조(濁酒製造)에 관(關)한 연구(硏究))

  • Kim, S.Y.;Oh, M.J.;Kim, C.J.
    • Korean Journal of Agricultural Science
    • /
    • v.1 no.1
    • /
    • pp.67-81
    • /
    • 1974
  • In order to prepare the mashing materials for "Takju", Korean wine, with potatoes they were steamed, dryed, and pulverized, and their chemical components were analyzed. As a brewing method of Takju with potatoes, general 2nd stage process with Ipkuk and Bunkuk (enzyme sources), commonly used now, was carried out and the effects of preparing conditions of Ipkuk(koji) with potato flour, mashing materials and brewing conditions on the contents of Takju mash and of storing time on the contents of Takju, were investigated and the results obtained were summarized as follows. 1. Chemical components of steamed potatoes and potato flour were Moisture; 76.2, 10.8%, Total sugar; 16.1, 69.8%, Reducing sugar; 3.45, 13.4%, Crude protein; 2.1, 11.3%, Total acid; 0.012, 0.023% and Volatile acid; 0.0012, 0.0025% respectively 2. The most effective preparing conditions of Ipkuk with potato flour were to incubate the potato flour added 40-50% of water for 48 hours by general preparing process of Koji, and liquefying and saccharogenic amylase activities of Ipkuk incubated at above conditions were $D_{40^{\circ}}{^{30{\prime}}}$ 128 W.V. and 13.2 A. U. 3. The effects of various brewing conditions on the contents of Takju mashes wereas follows; 1) Optimum ratio of mashing water and materials for Takju brewing with potato flour was 140ml of water to 60g of flour in 1st stage and 260ml to 140g in 2nd stage. 2) Optimum fermentating times and temperatures for Takju brewing were at $25^{\circ}C$ for 48 hours in 1st stage and at $30^{\circ}C$ for 48 hours in 2nd stage. 3) Optimum amounts of enzyme sources for Takju brewing 20-30% of Ipkuk and 0.5% of Bunkuk in 1st stage and 1.0% of Bunkuk in 2nd stage. 4) Methanol content of the Takju mash brewed with raw potato flour was much more than that with steamed potato flour. 5) Alcohol fusel oil and Formal nitrogen contents of the Takju mash brewed with potato flour were less than that with wheat flour, on the contrary, methanol contents and total acidities of them were showed conversely above. 4. The changes of chemical components and microflora in the mashes during the brewing potato flour Takju were as follows; 1) The accumulation of ethanol followed rapidly in early stage, being the highest at 72 hours (11.9%) 2) Total sugar content of the mash was decreased considerably within 48-72 hours, being 2.62% at 72 hours, and thereafter slowly. 3) Reducing sugar of the mash had a tendency of decreasing, being 0.29% at 48 hours. 4) Total acidity, volatile acidity and Formal nitrogen content of the mash were increased slowly, being 7.30, 0.20, 2.55 at 48 hours. 5) Total cells of yeast appeared the highest in 72 hours ($2.1{\times}10^8$) and thereafter decreased slowly. 6) Total cells of bacteria appeared the highest in 48 hours ($2.4{\times}10^8$) and thereafter decreased or increased slightly. 5. Takju was made from the fermented mash mixed with water to be 6% of alcohol content, and the change of alcohol content, total acidity, total cells of yeast and bateria during the storing at $30^{\circ}C$ were as follows; 1) Alcohol content of Takju was increased slightly at 24 hours (6.2%), and thereafter decreased slowly. 2) Total acidity of Takju was increased gradually, being 6.1 at 72 hours 3) Total cells of yeast and bacteria appeared the highest at 48 hours ($2.3{\times}10^8$, $1.5{\times}10^8$) and thereafter decreased slowly. 6. Alcohol content, total acidity and Formol nitrogen content of the Takju brewed with potato flour Ipkuk or wheat flour Ipkuk and steamed potatoes(1:5) were 9.8-11.3%, 5.8-7.4, 2.5-3.3 respectively, and the color of the Takju was similar to commercial Takju. 7. The results of sensory test for various experimental Takju, showed that the Takjues brewed with the materials combined with wheat flour and steamed potatoes (4:5 or 3.5:7.5) were not significantly different in color, taste and flavor from commercial Takju, However, those with potato flour and wheat flour (1:1 or 7:3) were significantly different from commercial Takju.

  • PDF