• Title/Summary/Keyword: 총괄 반응

Search Result 61, Processing Time 0.024 seconds

Kinetic and Equilibrium Studies on Complex Formation Between Ni(II) and D-Penicillamine in Aqueous Media (Ni(II)와 D-Penicillamine과의 착물형성반응에 대한 속도론적 및 평형에 관한 연구)

  • Yong-Kyu Kim;Sung-Nak Choi
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.475-482
    • /
    • 1986
  • Rates and equilibriurn of complex formation between $Ni^{2+}$ and D-penicillamine have been investigated in aqueous solutions. Kinetic study on the complex formation were performed in the pH range of 8∼9 by the use of pressure-jump technique. D-Penicillamine coordinates to the nickel(II) ion utilizing sulfur and nitrogen as donor atoms in the high pH condition (pH 9.2). However, in the pH range of 8.25∼9.07, the stepwise stability constant becomes drastically reduced and the undissociated mercapto group does not participate in bonding. The rate-determining step of the complexation reaction is found to be the release of a water molecule from the inner-coordination sphere of $Ni^{2+}$ ion.

  • PDF

Development of Continuous Dechlorination Process with High Efficiency for the Industrial Utilization of Waste Plastic Fuel (폐플라스틱 연료의 산업체 이용을 위한 연속식 고효율 탈염공정개발)

  • Chung, Soo-Hyun;Kim, Sang-Guk;Woo, Je-Kyung;Na, Jeong-Geol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.423-435
    • /
    • 2005
  • 본 연구는 PVC를 포함한 혼합플라스틱을 연료화하는데 있어서 가장 큰 장애요인으로 되어있는 염소분을 효율적으로 제거하기 위한 목적으로 진행되었다. 염소성분을 원천적으로 제거하기 위해서는 PVC 내에 함유된 염소분을 제거하는 것이 관건이며 원천탈염을 통하여 제거하지 않으면 총괄 염소분의 변화가 없기 때문에 실제로 연료사용에는 한계가 있는 경우가 많다. 본 연구는 PVC중 56% 이상 함유되어 있는 염소성분을 연속식 스크루 반응기에 의하여 가열하여 제거하는 방식을 사용하였으며 각 공정의 변수별로 제거효율을 분석하여 최적조업조건에 대한 분석을 실시하였다. 일반적인 공정조업조건은 공급량, 혼합 플라스틱의 점도, 2차 반응기의 온도, 스크루 회전수 등이며 이 가운데 가장 결정적인 조건은 가열온도 변수이며 여타의 최적조업조건 하에서 $300^{\circ}C$ 이상인 경우에는 90% 이상의 탈염효율을 유지할 수 있음을 알 수 있었다.

  • PDF

Variation of Adenosine tri-Phosphate(ATP) in Fermentation-Extinction of Food Wastes with Wood Bio-Chip (목질바이오칩에 의한 음식물쓰레기 발효-소멸반응에서의 아데노신3인산의 변화)

  • Oh, Jeong-Ik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.363-368
    • /
    • 2010
  • The overall indicator of microbial activity in the fermentation-extinction reaction of food waste by using bio wood-chips were investigated by considering adenosine tri-phosphate(ATP). Degradation rate of organic compounds, which was represented by chemical oxygen demand(COD) and total nitrogen(TN), was increased with the concentration of adenosine tri-phosphate during fermentation-extinction reaction of food waste by using bio-wood chips. With this view, the ATP would be one of the overall evaluation indicator of organic degradation in the species of bio-wood chip for the fermentation-extinction of food waste.

Mass Transfer Phenomena in Polycondensation Reaction of Poly(ethylene naphthalate) (폴리(에틸렌 나프탈레이트)의 축중합 반응에서 물질 전달 현상)

  • 이성진;정성일
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.121-127
    • /
    • 2004
  • The instantaneous removal of ethylene glycol is very important fur obtaining high molecular weight polymer because of the reversibility of the polycondensation reaction of poly(ethylene naphthalate)(PEN). In this study, we investigated the mass transfer phenomena in the thin film of PEN oligomer where the polycondensation reaction took place at 280$^{\circ}C$ and under 0.1mmHg. In case of less than 0.025cm film thickness the mass transfer resistance through the thin film of the polymer melt was not so high that the overall reaction rate was governed only by the polycondenstion reaction. Both the mass transfer model and the diffusion model predicted the experimenatal data well but the diffusion model showed faster reaction rate in the low molecular weight range than the mass transfer model . It was estimated from the two models that the diffusivity was 4.7${\times}$10$\^$-6/$\textrm{cm}^2$/sec and the mass transfer coefficient was 1.4 ${\times}$10$\^$-4/cm/sec both of which were smaller than In case of poly(ethylene terephthalate).

Synthesis of High Purity p-Phenylenediamine from p-Nitroaniline by Catalytic Hydrogenation (Pd/C촉매하 파라니트로아닐린 수소첨가에 의한 고순도 파라페닐렌디아민의 합성공정)

  • Cho, Chul Kun;Chung, Kwang Bo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1210-1215
    • /
    • 1999
  • Optimum conditions of the hydrogenation of PNA to pure PPD were determined in a three-phase slurry reactor with suspended Pd/C catalyst particles. Minimization of mass transfer resistances at the interfaces of both gas-liquid and liquid-catalyst particles and control of overall reaction rate on catalyst surface leaded to decrease the hydrogen starvation on reaction active sites and to reduce the side reactions during hydrogenation. The optimum temperature, pressure, and catalysst concentration were confirmed to be in the range of $60^{\circ}C$, 60~70 psig, and 1~2 g-cat/L, respectively. Reaction rate was zero order with respect to the concentration of PNA and 1st order with respect to the pressure of hydrogen(P). Overall rate expression of the reaction was $R_A=6.44{\times}10^6{\cdot}H{\cdot}P{\cdot}m{\cdot}$exp(-4659/T) where H is constant, m is concentration of catalyst, and T is temperature.

  • PDF

The Kinetics of Transesterification between Dimethylterephthalate and 1,3-Propanediol (디메틸 테레프탈레이트와 1,3-프로판디올 사이의 에스테르교환반응에 관한 연구)

  • Na, Sang-Kuwon;Kong, Byeong-Gi;Choi, Chang-Yong;Kim, Jung-Gyu;Hong, Wan-Hae;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2005
  • The transesterification of dimethyl terephthalate (DMT) with 1,3-propanediol (PDO) was investigated in the presence of catalyst, titanium (IV) butoxide (TBO), at 175~190 $^{\circ}C$ . The degree of transesterification reaction was measured by the output of methanol which was distilled from the reactor. The amount of methanol increased as the reaction temperature, molar ratio and catalyst concentration increased. The observed overall rate of the transesterification was third order; first order with respect to DMT, PDO, and the concentration of catalyst, respectively. Using calculated rate constants, the activation energy for transesterification was 26.93 kcal/mole. The melting temperature of bis(2-hydroxytrimethyl) terephthalate (BHTMT) was 85.2$^{\circ}C$ and heat of fusion 141.3 J/g.

Removal of Cd(II) by Cation Exchange Resin in Differential Bed Reactor (미분층반응기에서 양이온 교환수지에 의한 카드뮴(II)의 제거)

  • Kim, Jong-Tae;Chung, Jaygwan G.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1193-1203
    • /
    • 2000
  • In this study, in order to remove Cd(II) from aqueous solutions, strongly acidic cation exchange resin(SK1B) by Diaion Co. was employed as an adsorbent. Experiments were mainly performed in two parts at room temperature($25{\pm}5^{\circ}C$) : batch tests and adsorption kinetics tests. In batch tests adsorption equilibrium time, pH effects, temperature effects, several adsorption isotherms, and finally desorption tests were examined. In differential bed tests, an optimum flow rate and an overall adsorption rate were obtained. In the batch experiment, adsorption capability increased with pH and became constant above pH 6 and adsorption quantity increased with temperature. Batch experimental data found that Freundlich and Sips adsorption isotherms were more favorable than Langmuir adsorption isotherm over the range of concentration (5~15ppm). The desorbent used in the desorption test was hydrochloric acid solution with different concentrations(0.01~2N). The degree of regeneration increased with concentration of desorbent and decreased slightly with the number of regeneration. In the continuous flow process using a differential bed reactor, the optimum flow rate was $564m{\ell}/min$ above which the film diffusion resistance was minimized. The overall adsorption rate for the removal of Cd(II) by cation exchange resin was found as follows ; $r=1.3785C_{fc}^{1.2421}-2.0907{\times}10^{0.0746C_i}\;q_e^{0.0121C_i-0.0301}$

  • PDF

유화전이에스테르화에 의한 대두유의 biodiesel화

  • Gang, Yeong-Min;Kim, Hae-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.787-790
    • /
    • 2001
  • Emulsified transesterification of soybean oil into biodiesel was investigated using potassium hydroxide and sodium methoxide catalysts with methyl glucoside oleic polyester as a methanol-in-oil emulsifier. The transesterification reaction conditions were optimized to obtain high yields of fatty acid methyl esters of the quality defined by biodiesel standards. The developed process resulted in $95{\sim}96%$ of overall yield from soybean oil by alkali-catalyzed methanolysis at $45^{\circ}C$ of reaction temperature with 6:1 of methanol-to-oil molar ratio and l(v/v)% methyl glucoside oleic polyester in the presense of 0.8wt% KOH and 1.2wt% $NaOCH_3$.

  • PDF

Effective Interfacial Area in an Agitated Liquid-Liquid Contactor by a Chemical Method (화학방법에 의한 액-액 계면 면적)

  • Park, Sang-Wook;Moon, Jin-Bok;Shin, Jeung-Ho;Park, Dae-Won;Kim, Jong-Hyeon
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.103-112
    • /
    • 1993
  • The rates of overall mass transfer of n-butyl acetate in the alkaline hydrolysis of n-butyl acetate were measured by using a mechanically agitated vessel in order to get the relationship between the mass transfer rates and experimental variables. The interfacial area between liquid-liquid heterogeneous phases could be obtained by comparing the theoretical values of reaction enhancement factor from an approximated solution of a diffusion equation based on the film theory with the experimental data.

  • PDF

Kinetics for Reduction of trans-[Co(en)$_2$(NO$_2$)Cl]$^+$ and [Fe(H$_2$O)$_6$]$^{2+}$ in Acidic Solution (산성용액내에서 trans-[Co(en)$_2$(NO$_2$)Cl]$^+$ 와 [Fe(H$_2$O)$_6$]$^{2+}$ 와의 산화환원반응에 대한 속도론적 연구)

  • Park Byung-Kak;Woo Tae-Ha;Lim Joo-Sang;Song Yeung-Dae
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.460-464
    • /
    • 1990
  • Proton behavior was investgated for the redox reaction of trans-[$Co(en)_2(NO_2)Cl]^+$ with aqueous Fe(II) in acidic solution by UV/vis-spectrophotometric method. The reaction order of proton is first one and the rate constant(k$_H^+$) is 6.7 ${\times}\;10^{-1}L^2/mol^2{\cdot}min$. The values of $E_a$, ${\{Delta}H^{\neq}$, ${\{Delta}S^{\neq}$ are 14.5 Kcal/mol, 13.8 Kcal/mol and -18.3e.u., respectively. As the result of analysis of kinetic data, it has been found that this reaction proceeds through inner-sphere mechanism.

  • PDF