• Title/Summary/Keyword: 총고용성분

Search Result 2, Processing Time 0.017 seconds

Temperature and Compositional Characteristics of the Hot Spring Water in Korea (우리나라 온천의 온도 및 성분 특징)

  • Lee, Cholwoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.121.1-121.1
    • /
    • 2010
  • We analyzed the temperature and chemical composition of 376 hot springs in Korea. It took about three days for the temperature to stabilize after the pumping test. After the stabilization, in-situ and laboratory analyses of the hot spring water were carried out. The average temperature and TDS were $29.95^{\circ}C$ and 2,071mg/L, respectively. The temperature ranging $25-30^{\circ}C$ were recorded from 70% of hot springs, and $30-35^{\circ}C$ of 15.4%. The maximum temperature was about $78^{\circ}C$. The value of TDS in 79% of the wells was below 1,000 mg/L. 5.5% of the wells, mostly developed near seashore, shows higher values than 10,000mg/L of TDS suggesting the influence of seawater. The hot spring water shows 8.49 of pH representing a weak alkali. For the mineral compositions dissolved in the hot spring in Korea, Na (431 mg/L) and Ca (188 mg/L) are the major cations, and Cl (840 mg/L) and $SO_4$ (213 mg/L) are the major anions.

  • PDF

Hydrochemical Characteristics of Natural Mineral Water in the Daebo and Bulguksa Granites (대보화강암과 불국사화강암지역 먹는샘물의 수리화학적 특성)

  • 조병욱;성익환;추창오;이병대;김통권
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.247-259
    • /
    • 1998
  • Groundwater quality of the natural mineral water was investigated in hydrochemical aspects in order to ensure that mineral water meets stringent health standards. There exist 20 mineral water plants in the Daebo granite and 4 mineral water plants in the Bulguksa granite, respectively. Both granite areas show some differences in water chemistry. The pH, EC, hardness, total ionic contents in groundwater of the Daebo granite area are higher relative to those of the Bulguksa granite area. The content of major cations is in the order of Ca>Na>Mg>K, while that of major anions shows the order of $HCO_3>SO_4$>Cl>F. The fact that the $Ca-Na-HCO_3$ type is most predominant among water types may reflect that the dissolution of plagioclase that is most abundant in granitic rocks plays a most important role in groundwater chemistry. Representative correlation coefficients between chemical species are variable depending on geology. In the Daebo granite area, $Ca-HCO_3(0.84),{\;}Mg-HCO_3(0.81),{\;}SiO_2-Cl(0.74),{\;}Na-HCO_3(0.70)$ show relatively good correlationships. In the Bulguksa granite area, fairly good correlationships are found among some components such as K-Mg(0.93), $K-HCO_3(0.92)$, Mg-Cl(0.92), $Cl-HCO_3(0.91)$, and K-F(0.90). According to saturation index, most chemical species are undersaturated with respect to major minerals, except for some silica phases. Groundwater is slightly undersaturated with respect to calcite, whereas it is still greatly undersaturated with respect to dolomite, gypsum and fluorite. Based on the phase equilibrium it is clear that groundwater is mostly in equilibrium with kaolinite and becomes undersaturated with respect to feldspars, evolved from the stability area of gibbsite during water-rock interaction. While the activity of silica increases, there is no remarkable increase in the acivities of alkali ions and pH, which indicates that some amounts of silicic acid dissolved from silica phases as well as feldspars were provided to groundwater. It is concluded that chemical evolution of groundwater in granite aquifers may continue to proceed with increasing pH.

  • PDF