• Title/Summary/Keyword: 촉진강도

Search Result 454, Processing Time 0.024 seconds

Study on the Strength Development of cement paste using High-Early-Strength Cement and Hardening Accelerator (조강시멘트와 경화촉진제가 압축강도에 미치는 영향에 대한 실험적 연구)

  • Min, Tae-Beom;Jo, In-Seong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.56-58
    • /
    • 2013
  • In order to develop concrete generating compressive strength of 15MPa~30MPa aging for 6~12 hours in the room temperature curing, Hardening accelerator containing Ca2+ mixed with rapid hardening portland cement containing C3S in quantity. The result was that the more addictive contents of Hardening accelerator is, the more greatly early compressive strength was improved. That s because the composition of Ca(OH)2 was mass-produced at early-ages.

  • PDF

한국계 벤처 네트워크 활성화를 통한 벤처기업 해외진출 촉진방안 중국.인도.이스라엘계 민족적 네트워크 모델과의 비교분석

  • 한창혁;배종태
    • Proceedings of the Technology Innovation Conference
    • /
    • 2002.02a
    • /
    • pp.237-268
    • /
    • 2002
  • 실리콘밸리는 보이지 않는 인적 네트워크(Human Network)로 움직인다. 실리콘밸리내 핵심정보와 세상 돌아가는 진짜 이야기는 인종별, 대학출신별, 출신기업별 소그룹 네트워크를 통해서만 이루어진다. 본 연구에서는 실리콘밸리라고 하는 창조적 공간과의 연결고리 강화를 통해 미래기회를 선점하기 위한 수단으로서 $\ulcorner$한국계 벤처 네트워크$\lrcorner$ 를 촉진하는 방안에 대해 살펴보고자 한다. 본 연구에서는 중국, 인도, 이스라엘 등 각 민족별 네트워크가 본국과 실리콘밸리간에 어떠한 협력관계를 보이고 있는가를 조사.분석한 후, 여러가지 가설을 도출하였다. 본 연구의 주요 결과는 다음과 같다. 첫째, 각 민족별 역사적 이민과정 및 배경에 따라 네트워크의 특성이 달라진다. 둘째, 본국의 산업발전 정도에 따라 본국과 실리콘밸리내 네트워크간의 관계가 달라진다. 셋째, 본국의 정책적 의지가 얼마나 강하냐에 따라 네트워크 활동의 강도도 달라진다. 넷째, 연구모형 인자간의 흐름방향에 따라 본국과 실리콘밸리 간의 역할 관계가 다르게 나타난다. 아울러 본 연구에서는 각 민족별 네트워크의 특성을 비교 분석한 후, 한국계 벤처 네트워크의 모델도 함께 제시하였다. 끝으로 본 연구의 관찰 및 분석을 바탕으로, 한국계 Global Network 발전방안에 대한 정책적인 제안을 제시하였다.

  • PDF

Application of Concrete for Freeze Protection using Antifreeze admixture (내한촉진제를 사용한 방동콘크리트의 적용 사례)

  • Lee, Tae-Gyu;Song, Yeong-Chan;Kim, Yong-Ro;Lee, Tae-Gyu;Kim, Rae-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.84-85
    • /
    • 2017
  • In this study, the development and application of concrete using accelerator for freeze protection is presented. As a result, physical properties of concrete using antifreeze admixture were no significant differences compared to ordinary portland cement.

  • PDF

Effects of Curing Temperature on the Unconfined Compressive Strength of Lime Soil Mixtures (양생온도(養生溫度)가 석회혼합토(石灰混合土)의 압축강도(壓縮强度)에 미치는 영향(影響))

  • Kim, Jae Young;Kang, Yea Mook;Kim, Sung Wan
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.2
    • /
    • pp.433-444
    • /
    • 1975
  • This study was conducted to investigate the strength of lime soil mixtures for varied' curing temperatures(20, 30, 40, 50, $60^{\circ}C$) and lime content (3, 6, 9, 12%) in four lime-stabilized soils(KY : Sand, MH : Sand, SS: Sandy loam. JJ : Loam). The experimental results obtained from unconfined compressive strength tests are as follows; 1. The optimum moisture content increased and maximum dry density decreased with the increase of the lime content. 2. The lime content for the maximum strength of SS and JJ soils showed at the 9 percent lime content, but KY and MH soils didn't show the tendency of increase and decrease by the lime content and curing period. The rate of decrease of the soaked unconfined compressive strength showed the lower value in accordance with lime content. 3. According to increase in curing temperatures in curing temperatures at 30, 40, 50, $60^{\circ}C$, the unconfined compressive strength of lime soil mixtures increased, the rate of increase initially increased at a rapid rate, and showed that around 120 hours were sufficient curing time to complete hardening. 4. The average maximum temperature of Korea being around $30^{\circ}C$ from July to August, thus these months are ideal construction periods to increase the strehgth of lime soil mixtures. 5. Accelerated curing times equivalent to 28-day normal curing decreased in accordance with the increase of curing temperature, and showed shorter in lime soil mixtures than soil cement. 6. Accelerated curing times versus normal curing times are formed as a linear, its slope decreased in accordance with the increase of curing temperature, it may be expressed as follows: (1). $30^{\circ}C$ : t=2.63d-1.4(r=0.99) (2). $40^{\circ}C$ : t= 1.76d-0.8(r=0.97) (3). $50^{\circ}C$ : t=1.35d-3.2(r=0.94) (4). $60^{\circ}C$ : t=0.49d+1.8(r=0.91) in which t ; Accelerated curing time d ; Normal curing time.

  • PDF

Strength Development of the Concrete Incorporating Blast Furnace Slag and Recycled Aggregate as Alkali Activator (고로슬래그 미분말과 알칼리 자극재로서 순환골재를 사용하는 콘크리트의 강도발현 특성)

  • Kim, Jun-Ho;Han, Min-Cheol;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • The objective of this study is to evaluate the strength development of blast furnace slag concrete in response to the use of recycled aggregate as alkali activator. The influence of the amount of recycled aggregate was evaluated depending on different ratios of replacement for each RFA and RCA to NFA and NCA, respectively. The results indicated that as replacement of RFA and RCA increased, their strength exhibited to be increased. This was due to the fact that the latent hydraulic properties of blast furnace slag was activated by the alkali in recycled aggregates. However, in case of 365-days, it showed lower compressive strength than using NA(natural aggregates) which could be explained as the exhaustively use of alkali containing in RA. The specimens using RA showed about 90% of compressive strength comparing with specimens using NA.

Determination of Structural Capacity Based on Deformation and Bond Strength for RC Structure at Steel Corrosion (변형과 부착강도 기반 철근 부식에 의한 RC구조물의 구조적 성능 평가)

  • Jung Wook Lee;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.449-457
    • /
    • 2023
  • In this study, the structural limit for concrete was experimentally determined against corrosion of steel. The structural limit was taken as (1) the deformation of concrete at yielding, (2) the maximum pull-out strength and (3) the pull-out strength at the level for uncorroded specimen. Corrosion of steel was accelerated by extracting charges from steel surface to govern degree of steel corrosion. As a result, an increase in the steel diameter resulted in an increase in the corrosion degree to reach the concrete deformation at yielding. Again, an increase in the steel diameter resulted in an increase in the extracted charge to meet the maximum and uncorroded-equivalent level for the bond strength. However, the mass loss was marginally affected by the steel size, reflecting that these parameters could be used to alert the structural limit.

Properties of Portland Cement Clinker Using Polysilicon Sludge (폴리실리콘 슬러지를 원료로 사용한 포틀랜드 시멘트 클링커의 특성)

  • Lee, Seung-Heun;Lee, Se-Jin;Woo, Yang-Yee;Park, Jeoung-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.328-334
    • /
    • 2014
  • This study reviewed the usability of sludge, a material that is additionally created when polysilicon (a solar light material) is produced, as the raw material for cement clinker. It was evaluated that when cement clinker is produced, the chloric component of polysilicon acted as a mineralizer in the firing process. In addition, the physical features of the produced cement were measured. The setting time of the produced cement was reduced as the amount of content of polysilicon sludge increased. Such results were drawn because the chloric component acted as hydration accelerator and enhanced the dissolution of calcium hydroxide that was formed by hydration of $C_3S$. Furthermore, for such reason, on the day 1, the compression strength of mortar increased as the content of polysilicon sludge increased. In day 3, 7, and 28, the tendency in which the compression strength increasing up to 5% of the amount of added polysilicon sludge was shown. It is because when clinker was produced, the chloric component increased the amount of $C_3S$ mineral created, thus enhancing the compression strength after day 3.

Hydration Properties of Ordinary Portland Cement Using Mixture of Limestone and Blast Furnace Slag as Minor Inorganic Additives (소량 혼합재로서 석회석과 고로슬래그를 복합 사용한 보통 포틀랜드 시멘트의 수화특성)

  • Lee, Seung-Heun;Lim, Young-Jin;Cho, Jae-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.3-9
    • /
    • 2015
  • In this study, hydration properties of ordinary Portland cement were examined, shown from a limestone and blast furnace slag alone or their mixture up to 10% as a minor mineral additives. As of setting time, it was identified that final setting became faster as the amount of limestone mixture increased, which showed limestone accelerated early hydration faster than blast furnace slag. This is because limestone did accelerate the hydration of alite. At the age of 3 days, limestone 5%-blast furnace slag 5% mixture had the highest compressive strength of mortar. It is because hydration acceleration of alite by limestone, and $Ca(OH)_2$ that was additionally formed by hydration acceleration of alite reacted with blast furnace slag, and as a result, additionally created C-S-H hydrate. Regarding the hydration properties by the age of 7 and 28 days, limestone 3%-blast furnace slag 7% of composited mixture showed the largest compressive strength, and in comparison with the 3 days in curing age. This period is when hydration reaction of blast furnace slag is active and the amount of hydrate depends on the amount of blast furnace slag mixture more than that of the limestone mixture. And in order to vitalize hydration reaction of blast furnace slag the amount of $Ca(OH)_2$ created has to increase, and thus, a small amount of limestone is necessary that can accelerate the hydration of alite. Therefore, after the age of 7 days, the fact that there were a large amount of blast furnace slag mixture and small amount of limestone mixture was effective to the strength development of ordinary Portland cement.

Compressive Strength and Chloride Permeability of High Strength Concrete according to the Variety of Mineral Admixtures (광물질혼화재 종류별 고강도콘크리트의 압축강도 및 촉진 염소이온침투 특성)

  • Moon Han-Young;Kim Byoung-Kwon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.407-414
    • /
    • 2004
  • The purpose of this study is to evaluate the ability to resist chloride ions penetration of the concrete structure under marine environment in south-east asia especially. In this study, high strength concrete(HSC) with various combination of ordinary portland cement(OPC), blast-furnace slag(SG) and silica fume(SF) are cured 23 and $35^{\circ}C$ considering the site weather, and are cured in water for 3, 7 or 56 days respectively. And to investigate the fundamental properties and the resistance of chloride penetration of various HSC, setting time, slump flow, compressive strength, void and ASTM C 1202 test were conducted. Test results show that the compressive strength of HSC is similar regardless of SG replacement ratio and total charge passed of chloride is the smallest at 40% replacement of SG. The compressive strength of G4FS HSC is, besides, outstandingly high at early age compare with other HSC, but the compressive strength of G4F HSC, which is vary according to curing temperature and condition, most high at the age after 7 days. Total passed charge of HSC get larger in the order G4FS

A Study on the Effect of Calcium-Chloride Content on the Strength of Mortar (염화(鹽化)칼슘의 함량(含量)이 Mortar의 강도(强度)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Sung, Chan-Yong;Kang, Sin-Up
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.185-191
    • /
    • 1979
  • Compressive and tensile strengths of commonly being used mortar and mortar specially hardened by adding 1%, 2% and 3% of $CaCl_2$ were compared under the different mixing ratio of mortar and ages to investigate the effect of $CaCl_2$ which is being used as a promotor for coagulation and hardness, on the strength of mortar. The results obtained were as follows: 1. The compressive strength of mortar hardened by addition of $CaCl_2$ was higher than that of commonly being used mortar. The highest compressive strength of mortar was obtained when 2% of $CaCl_2$ were added. 2. The tensile strength of mortar, which was made by adding $CaCl_2$ and aged for seven days, was higher than that of commonly being used mortar. The highest tensile strength of mortar was obtained when 1% of $CaCl_2$ was added and aged for 28 days. And the tensile strength of mortar with 2% of $CaCl_2$ was lower than that of commonly being used mortar. 3. When the amount of $CaCl_2$ added was higher than 3%, the mortar was abruptly hardened and thereby occurred crack was considered lowering strength of mortar. 4. The rich mix was effective for the increasing the compressive and tensile strength before seven days of age and less effective after seven days of age. Therefore, the addition of one to two per cent of $CaCl_2$ would be effective for promoting initial strength of mortar during winter season.

  • PDF