• Title/Summary/Keyword: 초해상

Search Result 301, Processing Time 0.032 seconds

Scalable Video Coding using Super-Resolution based on Convolutional Neural Networks for Video Transmission over Very Narrow-Bandwidth Networks (초협대역 비디오 전송을 위한 심층 신경망 기반 초해상화를 이용한 스케일러블 비디오 코딩)

  • Kim, Dae-Eun;Ki, Sehwan;Kim, Munchurl;Jun, Ki Nam;Baek, Seung Ho;Kim, Dong Hyun;Choi, Jeung Won
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.132-141
    • /
    • 2019
  • The necessity of transmitting video data over a narrow-bandwidth exists steadily despite that video service over broadband is common. In this paper, we propose a scalable video coding framework for low-resolution video transmission over a very narrow-bandwidth network by super-resolution of decoded frames of a base layer using a convolutional neural network based super resolution technique to improve the coding efficiency by using it as a prediction for the enhancement layer. In contrast to the conventional scalable high efficiency video coding (SHVC) standard, in which upscaling is performed with a fixed filter, we propose a scalable video coding framework that replaces the existing fixed up-scaling filter by using the trained convolutional neural network for super-resolution. For this, we proposed a neural network structure with skip connection and residual learning technique and trained it according to the application scenario of the video coding framework. For the application scenario where a video whose resolution is $352{\times}288$ and frame rate is 8fps is encoded at 110kbps, the quality of the proposed scalable video coding framework is higher than that of the SHVC framework.

Development of Synthetic Signal Generator and Simulator for Performance Evaluation in Multiple Sonobuoy System (다중 소노부이 체계의 신호합성기 및 성능검증용 시뮬레이터 개발)

  • Lee, Su Hyoung;Park, Sang Bae;Han, Sang-Gyu;Kown, Bum Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.11-22
    • /
    • 2021
  • Sonobuoy is widely used as a very important sensor in combat management system using P-3 patrol aircraft due to its advantages of rapid searching into wide exploration range. It is necessary to verify the performance of developed sonobuoy system using various maritime test data in order to be successfully applied in combat management system. But it is difficult to acquire various real maritime data because it needs much time and effort. Therefore we have developed in this paper a synthetic signal generator and a simulator that they can verify the performance of sonobuoy system and evaluate its operational effectiveness without conducting maritime test. We have synthesized target signals based on the characteristics of underwater sound sources, and then developed the synthesized signal generator which consider to sound propagation etc. like as underwater environment. And in the simulator development we use a HMI technique to enhance the convenience of operator, and design to verify the performance of sonobuoy system. The developed signal generator and simulator can be used as useful tools to evaluate the operational effectiveness such as optimal deployment of sonobuoy in combat management system using P-3 patrol aircraft.

Scanning Tunneling Microscopy: 표면 과학 연구 장비로부터 일반 고체물리 실험 장비로

  • Guk, Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.76-76
    • /
    • 2013
  • Scanning Tunneling Microscopy는 개인용컴퓨터가 보급되고, 저잡음 아날로그 칩들을 구할 수 있으며, 압전세라믹 기술이 발달하기 시작한 1981년 스위스 IBM Zurich 연구소에서 H. Rohrer와 G. Binnig 박사에 의하여 발명되었다. 이 발명 7~8년 이전 미국 표준연구원의 R. Young 박사도 비슷한 시도를 하였지만, 이 때는 제어할 수 있는 컴퓨터가 없었고, 조절 회로의 잡음 레벨도 컸으며, 역학적 진동도 커서 목적을 달성할 수 없었다. STM의 발명 후 32년이 지난 지금, 조절용 컴퓨터의 발전은 물론, 조절용 역되먹임 회로 또한 digital signal processor나 FPGA를 사용하는 형태로 변화하여 전기적 잡음도 현저히 감소하였다 [1,2]. 동시에 측정 에너지 해상도를 개선하기 위하여 세계적으로 여러 그룹이 장치를 1 K 이하에서 작동할 수 있게 제작하였고, 0.3 K에서 작동하는 상업용 제품도 등장하였다. 이 결과 에너지 해상도는 30 meV 에서 2~3 ${\mu}eV$ 감소하였고, 온도변화에 따른 측정 위치의 변화도 피할 수 있게 되었다. 터널링 검침의 화학적 성분을 흡착과 같은 방법으로 조절하여, 공간 해상도는 물론 에너지 해상도도 더욱 줄일 수 있게 되었고, 스핀에 민감한 터널링 제어도 가능하게 되었다. 이제는 금속, 반도체, 초전도체는 물론 분자, 거대분자, 나노 크기의 양자점등도 측정이 가능하게 되었다. 분자진동 측정이 가능하며, 분자의 성분 분석이 가능하게 되었고, 스핀의 전도와 관련된 제반 문제들을 연구할 수 있게 되었다. 지금부터 10년 동안에는 포논의 측정과 전자와 포논 exciton 등이 관여된 다체계 현상, 이들의 동역학적 현상이 측정 가능하게 되었다. 핵자기 공명도 시도되고 있으며 화학적 구명 및 원자들 사이의 결합도 측정 가능하게 될 것이다. 이제 STM은 초고 진공에서 작동하는 Atomic Force Microscopy와 함께 지금까지 고체물리학 실험 장치가 만들어 내지 못하던 새로운 결과를 도출해 낼 것으로 기대한다.

  • PDF

Real-time Low-Resolution Face Recognition Algorithm for Surveillance Systems (보안시스템을 위한 실시간 저해상도 얼굴 인식 알고리즘)

  • Kwon, Oh-Seol
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.105-108
    • /
    • 2020
  • This paper presents a real-time low-resolution face recognition method that uses a super-resolution technique. Conventional face recognition methods are limited by low accuracy resulting from the distance between the camera and objects. Although super-resolution methods have been developed to resolve this issue, they are not suitable for integrated face recognition systems. The proposed method recognizes faces with low resolution using key frame selection, super resolution, face detection, and recognition on real-time processing. Experiments involving several databases indicated that the proposed algorithm is superior to conventional methods in terms of face recognition accuracy.

Character Recognition Algorithm in Low-Quality Legacy Contents Based on Alternative End-to-End Learning (대안적 통째학습 기반 저품질 레거시 콘텐츠에서의 문자 인식 알고리즘)

  • Lee, Sung-Jin;Yun, Jun-Seok;Park, Seon-hoo;Yoo, Seok Bong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1486-1494
    • /
    • 2021
  • Character recognition is a technology required in various platforms, such as smart parking and text to speech, and many studies are being conducted to improve its performance through new attempts. However, with low-quality image used for character recognition, a difference in resolution of the training image and test image for character recognition occurs, resulting in poor accuracy. To solve this problem, this paper designed an end-to-end learning neural network that combines image super-resolution and character recognition so that the character recognition model performance is robust against various quality data, and implemented an alternative whole learning algorithm to learn the whole neural network. An alternative end-to-end learning and recognition performance test was conducted using the license plate image among various text images, and the effectiveness of the proposed algorithm was verified with the performance test.

Analysys on Factors Affecting Velocity Errors On the Application of LSPIV (LSPIV를 적용시 오차발생 요인 분석)

  • Kim, Young-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1779-1783
    • /
    • 2008
  • 영상해석을 통한 흐름해석의 방법인 Large-Scale Particle Image Velocimetry (LSPIV)는 실험실내의 소규모 흐름해석에 이용하던 Particle Image Velocimetry (PIV)를 자연하천이나 실험실에서 넓은 영역($4m^2{\sim}45,000m^2$)에 적용할 수 있도록 확장시킨 것으로 지난 10여년전부터 세계적으로 널리 이에 대한 연구가 진행되고 있다. PIV는 seeding, illumination, recording 그리고 image processing으로 구성된다. LSPIV(Large Scale PIV)는 PIV의 기본원리를 근거로 하여 기존의 PIV에 비하여 실험실 내에서의 수리모형실험이나 일반 하천에서의 유속측정과 같은 큰 규모의 흐름해석을 할 수 있도록 seeding, illumination에 대한 조정이 필요 하고, 촬영된 image에 대한 왜곡을 없애는 작업이 필요하다. LSPIV는 PIV의 네 가지 단계를 포함하여 seeding, illumination, recording, image transformation, image processing 및 post-processing의 여섯 단계로 구성되어진다 (Li, 2002). LSPIV의 적용시 각 단계마다 유속계산시 오차를 발생시키는 27가지의 요인들이 존재하고 있는바 (Kim, 2006), 본 연구에서는 이들 중 실내의 실험실에서 파악이 가능한 인자들에 대해 그들 각각의 인자들이 유속 측정에 미치는 오차의 정도를 파악하고자 하였다. 본 연구에서는 LSPIV의 적용시 이용되는 이미지의 개수와 이미지 촬영시 적용된 이미지의 해상도에 따른 오차의 발생 정도를 조사하였다. 이미지 촬영에 있어서 비디오카메라를 이용할 경우 촬영시간에 따라 많은 수의 이미지를 취득할 수 있은바 이미지의 수에 따른 유속계산오차를 파악하고자 하였다. 또한 디지털 카메라를 이용할 경우 여러 가지 이미지 해상도를 이용할 수 있으므로 적용한 이미지 해상도에 따른 유속계산에 미치는 오차의 크기를 파악하고자 하였다. 이미지의 갯수가 유속계산시 미치는 오차의 영향의 정도를 조사하기 위해서 초당 30 frame을 촬영할 수 있는 비디오카메라를 이용하여 91초 동안 촬영된 이미지로부터 매 5번째의 이미지를 추출하여 455개의 이미지를 준비하였고 이로부터 이미지수를 10, 50, 100, 200, 300, 400의 순서로 증가시키면서 이미지 개수로부터 나타나는 유속계산 오차를 조사한 결과 이미지의 개수가 50매 이상인 경우는 이로 인한 오차가 1% 이하로 감소함을 파악하였다. 촬영된 이미지의 해상도가 유속계산시 미치는 영향을 조사하기 위해 디지털카메라를 적용하여 세가지 이미지 해상도(640*480, 1280*960, 2048*1536 pixel)로 변화시키면서 유속측정 오차를 분석한 결과 저해상도의 이미지를 이용한 경우 고해상도 이미지를 이용한 경우와 비교하여 3% 가량의 차이를 나타내었다.

  • PDF

Convergence of Artificial Intelligence Techniques and Domain Specific Knowledge for Generating Super-Resolution Meteorological Data (기상 자료 초해상화를 위한 인공지능 기술과 기상 전문 지식의 융합)

  • Ha, Ji-Hun;Park, Kun-Woo;Im, Hyo-Hyuk;Cho, Dong-Hee;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.63-70
    • /
    • 2021
  • Generating a super-resolution meteological data by using a high-resolution deep neural network can provide precise research and useful real-life services. We propose a new technique of generating improved training data for super-resolution deep neural networks. To generate high-resolution meteorological data with domain specific knowledge, Lambert conformal conic projection and objective analysis were applied based on observation data and ERA5 reanalysis field data of specialized institutions. As a result, temperature and humidity analysis data based on domain specific knowledge showed improved RMSE by up to 42% and 46%, respectively. Next, a super-resolution generative adversarial network (SRGAN) which is one of the aritifial intelligence techniques was used to automate the manual data generation technique using damain specific techniques as described above. Experiments were conducted to generate high-resolution data with 1 km resolution from global model data with 10 km resolution. Finally, the results generated with SRGAN have a higher resoltuion than the global model input data, and showed a similar analysis pattern to the manually generated high-resolution analysis data, but also showed a smooth boundary.

Man-made Feature Extraction from the Hyperion Sensor Data (Hyperion 센서 데이터를 이용한 지형지물 추출)

  • 서병준;강명호;이용웅;김용일
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.182-186
    • /
    • 2003
  • 일반적으로 영상은 공간, 분광 및 시간 해상력을 바탕으로 고해상과 저해상 영상으로 구분된다. 최근 IKONOS 와 QuickBird 등 공간해상력이 1m 이하인 위성 영상들이 국내에 공급되어 바야흐로 고해상 위성영상을 이용한 다양한 활용분야들이 연구되고 있다. 이에 반하여 고분광해상력을 갖는 하이퍼스펙트럴 영상에 대한 연구는 미흡한 실정이다. 국제적으로는 항공기탑재 센서들을 이용한 다양하고 광범위한 조사분석 연구가 이루어지고 있으나, 국내에서는 장비와 관심의 부재로 인하여 초기적인 연구 단계에 있는 실정이다 하이퍼스펙트럴 센서는 환경, 지질, 목표물 인식 분야에 있어 많은 관심을 받고 있으며 위성탑재 초다중분광센서가 운용되기 시작하면서 연구의 활성화가 더욱 기대되고 있다. 본 연구에서는 EO-1 위성의 Hyperion 센서 데이터를 이용하여 노이즈 제거를 위한 영상 전처리 과정을 실시하고 분광특성에 따른 무감독 분류를 통한 인덱싱 기법과 널리 알려진 분광 라이브러리를 활용한 대상물, 특히 인공지물 추출 기법을 실험하였다. 이를 위하여 MNF(Maximum/Minimum Noise Filtering) 변환 및 분광 매칭(Spectral Matching) 기법, 분광 라이브러리 처리 등을 수행하였다. 결과의 비교를 위하여 동일 지역의 Landsat ETM+ 데이터를 이용하여 상호비교를 통한 검증작업으로서 그 성과를 판단하였다.

  • PDF

Example-based Super Resolution Text Image Reconstruction Using Image Observation Model (영상 관찰 모델을 이용한 예제기반 초해상도 텍스트 영상 복원)

  • Park, Gyu-Ro;Kim, In-Jung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.295-302
    • /
    • 2010
  • Example-based super resolution(EBSR) is a method to reconstruct high-resolution images by learning patch-wise correspondence between high-resolution and low-resolution images. It can reconstruct a high-resolution from just a single low-resolution image. However, when it is applied to a text image whose font type and size are different from those of training images, it often produces lots of noise. The primary reason is that, in the patch matching step of the reconstruction process, input patches can be inappropriately matched to the high-resolution patches in the patch dictionary. In this paper, we propose a new patch matching method to overcome this problem. Using an image observation model, it preserves the correlation between the input and the output images. Therefore, it effectively suppresses spurious noise caused by inappropriately matched patches. This does not only improve the quality of the output image but also allows the system to use a huge dictionary containing a variety of font types and sizes, which significantly improves the adaptability to variation in font type and size. In experiments, the proposed method outperformed conventional methods in reconstruction of multi-font and multi-size images. Moreover, it improved recognition performance from 88.58% to 93.54%, which confirms the practical effect of the proposed method on recognition performance.

Single Image Super Resolution Based on Residual Dense Channel Attention Block-RecursiveSRNet (잔여 밀집 및 채널 집중 기법을 갖는 재귀적 경량 네트워크 기반의 단일 이미지 초해상도 기법)

  • Woo, Hee-Jo;Sim, Ji-Woo;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.429-440
    • /
    • 2021
  • With the recent development of deep convolutional neural network learning, deep learning techniques applied to single image super-resolution are showing good results. One of the existing deep learning-based super-resolution techniques is RDN(Residual Dense Network), in which the initial feature information is transmitted to the last layer using residual dense blocks, and subsequent layers are restored using input information of previous layers. However, if all hierarchical features are connected and learned and a large number of residual dense blocks are stacked, despite good performance, a large number of parameters and huge computational load are needed, so it takes a lot of time to learn a network and a slow processing speed, and it is not applicable to a mobile system. In this paper, we use the residual dense structure, which is a continuous memory structure that reuses previous information, and the residual dense channel attention block using the channel attention method that determines the importance according to the feature map of the image. We propose a method that can increase the depth to obtain a large receptive field and maintain a concise model at the same time. As a result of the experiment, the proposed network obtained PSNR as low as 0.205dB on average at 4× magnification compared to RDN, but about 1.8 times faster processing speed, about 10 times less number of parameters and about 1.74 times less computation.