• Title/Summary/Keyword: 초정밀 FTS

Search Result 4, Processing Time 0.019 seconds

Ultra-Precision Machining Using Fast Tool Servo and On-Machine Form Measurement of Large Aspheric Mirrors (Fast Tool Servo를 이용한 대구경 반사경의 초정밀 가공 및 기상 형상 측정)

  • 김의중;송승훈;김민기;김태형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.129-134
    • /
    • 2000
  • This paper presents the development of ultra-precision machining process of large aspheric aluminum mirrors with a maximum diameter of 620 mm. An ultra-precision machine, "Nanoturn60", developed by Daewoo Heavy Industries Ltd. is used for machining and motion errors of the machine are compensated by using the FTS developed by IAE(Institue for Advanced Engineering) during the machining process. To check the form accuracy of machined aspheric surfaces, on-machine form measurement system is developed. This measurement system consists of air bearing touch probe, straight edge, and laser sensor. With in-process error compensation by FTS(Fast Tool Servo), aspheric mirrors with the from accuracy of submicron order are obtained. obtained.

  • PDF

The Improvement of Machining Accuracy and Compensation of Feeding Error in CNC Lathe Using Ultra Precision Fast Tool (초정밀 FTS 시스템을 이용한 CNC Lathe 스핀들 이송오차 보상 및 가공정밀도 향상)

  • Kim, Jae-Yeol;Kwak, Nam-Su
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.13-18
    • /
    • 2011
  • The ultra-precision products which recently experienced high in demands had included the large areas of most updated technologies, for example, the semiconductor, the computer, the aerospace, the media information, the precision machining. For early 21st century, it was expected that the ultra-precision technologies would be distributed more throughout the market and required securing more nation-wise advancements. Furthermore, there seemed to be increasing in demand of the single crystal diamond tool which was capable of the ultra-precision machining for parts requiring a high degree of complicated details which were more than just simple wrapping and policing. Moreover, the highest degree of precision is currently at 50 nm for some precision parts but not in all. The machining system and technology should be at very high performed level in order to accomplish this degree of the ultra-precision.

Ultra Precision Machining Technique for Optical System Parts (초정밀 가공기를 활용한 광학계 부품 가공기술)

  • Yang, Sun-Choel;Kim, Sang-Hyuk;Huh, Myung-Sang;Chang, Ki-Soo;Park, Soon-Sub;Won, Jong-Ho;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.13-19
    • /
    • 2012
  • Ultra Precision Machining Techniques, such as manufacturing Micro Lens Array(MLA), off-axis mirror, $F-{\theta}$ lens for laser printer, are achieved, based on technologies in consequence of development of modern high-precision machining mechanism. Above all, FTS(Fast Tool Servo) and STS(Slow Tool Servo) are more innovative technologies for reducing time and development costs. In this paper, it is described that MLA machining technique by FTS, off-axis mirror machining technique by STS, optics for observing space, and development of infrared aspheric lens for a thermal imaging microscope.

Development of Error Compensation System and On the Machine Measurement System for Ultra-Precision Machine (초정밀가공기용 오차보상시스템 및 기상측정장치 개발)

  • 이대희;나혁민;오창진;김호상;민흥기;김민기;임경진;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.599-603
    • /
    • 2003
  • This paper present an error compensation system and On-Machine Measurement(OMM) system for improving the machining accuracy of ultra-precision lathe. The Fast-Tool-Servo(FTS) driven by a piezoelectric actuator is applied for error compensation system. The controller is implemented on the 32bit DSP for feedback control of piezoelectric actuator. The control system is designed to compensates three kinds of machining errors such as the straightness error of X-axis slide, the thermal growth error of the spindle. and the squareness between spindle and X-axis slide. OMM is preposed to measure the finished profile of workpiece on the machine-tool using capacitive sensor with highly accurate ruby tip probe guided by air bearing. The data acquisition system is linked to the CNC controller to get the position of each axis in real-time. Through the experiments, it is founded that the thermal growth of spindle and tile squareness error between spindle and X-axis slide influenced to machining error more than straightness error of X-axis slide in small travel length. These errors were simulated as a sinusoidal signal which has very low frequency and the FTS could compensate the signal less than 30 m. The implemented OMM system has been tested by measuring flat surface of 50 mm diameter and shows measurement error less than 400 mm

  • PDF