• 제목/요약/키워드: 초정밀 공작기계

검색결과 94건 처리시간 0.025초

PZT 구동 나노 정밀도 스테이지를 위한 퍼지 제어기 개발 (Fuzzy Controller Design for a Nano Precision Stage Driven by a PZT)

  • 하호진;정규원
    • 한국공작기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.228-233
    • /
    • 2009
  • An ultra-precision stage is used in many industrial areas such as precision machine tools or semiconductor apparatus. These stages used to be driven by piezoelectric actuators in order to obtain ultra precision positioning resolution. Piezoelectric actuator can be moved fast in nanometer resolution. However, it has relatively large non-linear characteristics like hysteresis and creep curve. Although several kinds of control techniques have been developed, controller design method is still complicated. In this paper fuzzy control rules are developed intuitively. In order to verify the performance a series of experiments were conducted and the results were compared with those of the PID controller case.

초정밀가공기를 이용한 비철금속의 절삭특성에 관한 연구 (A study on the cutting characteristics of non-ferrous metals using diam odd turning machine)

  • 고준빈;김건희;원종호
    • 한국공작기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.124-129
    • /
    • 2001
  • The experimental study was the cutting characteristics of non-ferrous metals. The experimental apparatus was used the turning machine and diamond tool. This aimed at lading the optimal cutting conditions by measuring surface farm and roughness. Used non-ferrous metals were aluminum, brass and oxygen-free copper. As well, according to changing cutting conditions such as feed rate by measuring cutting farce and surface roughness and according to cutting conditions the non-ferrous metals studied about cutting properties.

  • PDF

재질 변화에 따른 초정밀가공기용 마이크로 스테이지의 안정성 해석 (Stability Analysis According to Material Alteration on Micro Stage for Micro Cutting Machine)

  • 김재열;곽이구;김항우
    • 한국공작기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.52-57
    • /
    • 2003
  • In this paper, stability of ultra precision cutting unit is analyzed and this unit is the kernel unit in ultra precision processing machine. According to alteration of shape and material about hinge, stability investigation is performed Through this stability investigation, trial and error is reduced in design and manufacture, at the same time, we are accumulated foundation data for unit control.

재질 변화에 따른 초정밀가공기용 마이크로 스테이지의 안정성 해석 (Stability Analysis according to Material Alteration on Micro Stage for Micro Cutting Machine)

  • 김재열;곽이구;김항우;안재신;김영석;김기태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.198-202
    • /
    • 2002
  • In this paper, stability of ultra precisio unit is analyzed, this unit is the kernel unit precision processing machine. According alteration of shape and material about stability investigation is performed. Through this stability investigation, trial is reduced in design and manufacture, at the time, we are accumulated foundation data for control.

  • PDF

초정밀 가공기의 실시간 운동오차 및 열변형오차 보상 (Real-time Motion Error Time and the Thermal Error Compensation of Ultra Precision Lathe)

  • 곽이구;김홍건;김재열
    • 한국공작기계학회논문집
    • /
    • 제15권4호
    • /
    • pp.44-48
    • /
    • 2006
  • Recently, demand the ultra precision product which is increasing rapidly is used extensively frontier industry field such as semi-conductor, computer, aerospace, precision machine. Ultra precision processing is the portion that is very needed to NT in the field of mechanical engineering. The latest date, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts those are connected with these industrial fields. Specially, require motion accuracy of high resolution of nm order in stroke of hundreds millimeters according as diameter of processing object great and processing accuracy rises. In this case ,the response speed absolute delay because inertial mass of moving part is very large. Therefore, real time motion error compensation becomes very hardly. In this paper, we used ultra precision cutting unit(UPCU) to cope such problem. a UPCU is designed and tested to obtain sub-micrometer from accuracy in diamond turning of flat surfaces. The thermal growth spindle error is compensated for real time using a UPCU driven by piezoelectric actuator along with a laser encoder displacement sensor.

부스터를 이용한 3자유도 초정밀 위치결정 기구의 최적설계 (Optimum Design of a 3-DOF Ultra-Precision Positioning Mechanism Using Boosters)

  • 한석영;이병주;김선정;김종오;정구봉
    • 한국공작기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.101-109
    • /
    • 2005
  • Ultra-precision positioning systems basically require high natural frequency and sufficient workspace. To cope with this requirement, flexure hinge mechanisms have been proposed. However, previous designs are hard to satisfy the functional requirements of the system due to difficulty in modeling and optimizing process applying an independent axiomatic design. Therefore, this paper proposes a new design and design-order based on semi-coupled axiomatic design. A planar 3 DOF parallel type micro mechanism is chosen as an exemplary device. Based on preliminary kinematic analysis and dynamic modeling of the system, an optimal design has been carried out. To check the effectiveness of the optimal parameters obtained from theoretical approach, simulation is performed by FEM. The simulation result shows that a natural frequency of 200.53Hz and a workspace of $2000{\mu}m{\times}2000{\mu}m$ can be ensured, which is in very close agreement with the specified goal of design.

축대칭 렌즈 코어의 초정밀 보정가공에 관한 연구 (A Study on the Ultra-precision Compensation Machining of Axisymmetric Lens Core)

  • 강상도;김우순;장광호;박순섭;김동현
    • 한국공작기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.108-114
    • /
    • 2005
  • Code V was used to make a plan for collimator lens with aspherical surface in the present study. The acquired optical design data were applied for ultra-precision machining. The optimum properties were determined to find ways to compensate the tool positioning error allowance during the ultra-precision machining. In ultra-precision aspheric machining, figure tolerance corrected by tool positioning error be improved by compensation cycle number.

SEM 측정법에 의한 초정밀 표면가공 특성연구 (A Study on the Surfaces Machining Characteristics of Ultra-precision through SEM Measurement)

  • 강순준;오상록;이갑조;김종관
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.34-41
    • /
    • 2004
  • The purpose of this paper is to look at the characteristics of surface finishing which is one of the form accuracies and to obtain the fundamental technical data from the process of machining with diamond tool through experiment and theoretical analysis. The experiments were conducted with domestic made ultra-precision machine and MCD.PCD tool, with aluminum alloyed material and brass being used for the work pieces. The goal of the size accuracy was set to 100nm. The most suitable tool nose radius and machining conditions were selected, and the variations of the surface roughness were observed using SEM method while machining the distance of up to 500km. These data were evaluated and they examined the variation of the machined surfaces while cutting up to 500km of machining distance. At the same time, the state for the wear of diamond tool nose was analyzed and carefully examined through the newest measuring device. Additionally, the characteristics of ultra-precision machining technology were studied through visual analysis.

  • PDF

초정밀 절삭가공에서 표면거칠기 특성 평가 (Characteristics Evaluation of Surface Roughness with Ultra Precision Machining)

  • 강순준;이갑조;김종관
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.83-88
    • /
    • 2003
  • In this study, experiments were conducted with an ultra-precision machine, developed In domestic, to find the characteristics and the most suitable cutting conditions of ultra-precision machining. To maximize the performance of the machine, the machine was installed in a room that is protected from vibration and is maintained constant temperature and constant humidity. Selected work pieces are an aluminum-alloyed material, which has excellent corrosion resistance and has low deformation. The used tool is synthetic poly crystal diamond which has excellent abrasion resistance and has low affinity. Four types of tool nose radius were used such as 0, 0.1, 0.2 and 0.4mm. Machining is performed with cutting speed of 500, 800 and 1000m/min., feed rate of 0.005, 0.008, 0.010mm/rev. and cutting depth of 0.0005, 0.0025 and 0.005mm respectively which can generally be used in the field as a cutting condition. As a method of evaluation surface roughness was measured for each cutting condition and reciprocal characteristics are computed for each tool nose radius, cutting speed, feed rate and cutting depth. As a result the most suitable cutting condition and characteristics of ultra-precision machining were identified which can usefully be applied in the industrial field.

  • PDF

초정밀 절삭가공에서 표면 거칠기 특성 평가 (Characteristics Evaluation of Surface Roughness with Ultra Precision Machining)

  • 강순준;김종관
    • 한국공작기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.9-15
    • /
    • 2004
  • In this study, experiments were conducted with an ultra-precision machine, developed in domestic, to find the characteristics and the most suitable cutting conditions of ultra-precision machining. To maximize the performance of the machine, the machine was installed in a room that is protected from vibration and is maintained constant temperature and constant humidity. Selected work pieces are an aluminum-alloyed material, which has excellent corrosion resistance and has low deformation. The used tool is synthetic poly crystal diamond, which has excellent abrasion resistance and has low affinity. Four types of tool nose radius were used such as 0, 0.1, 0.2 and 0.4mm. Machining is performed with cutting speed of 500, 800 and 1000m/min., feed rate of 0.005, 0.008, 0.010mm/rev. and cutting depth of 0.0005, 0.0025 and 0.005mm respectively which can generally be used in the field as a cutting condition. As a method of evaluation, surface roughness was measured for each cutting condition, and reciprocal characteristics are computed for each tool nose radius, cutting speed, feed rate and cutting depth. As a result, the most suitable cutting condition and characteristics of ultra-precision machining were identified which can usefully be applied in the industrial field.