• 제목/요약/키워드: 초정밀절삭

검색결과 84건 처리시간 0.037초

무전해 니켈의 초정밀 절삭에 의한 표면거칠기 연구 (A Study on the Surface Roughness in Ultra-Precision Cutting of Electroless Nickel)

  • 권우순;김동현;난바의치
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.538-541
    • /
    • 2003
  • Ultra-precision machining was carried out on a electroless nickel materials using single crystal diamond tools. The effects of the cutting velocity, the tool length, the tool nose radius, the feed rate and depth of cut on the surface roughness were studied. In this paper, the cutting condition for getting nano order smooth surface of electroless nickel have been examined experimentally by the ultra-precision machine and single crystal diamond tools. And also. the surface roughness was measured by the three dimension

  • PDF

알루미늄합금의 초정밀 내면절삭 (A study on the Ultra-precision Inner Cutting of Al-alloy)

  • 김우순;강상도;김동현;난바의치
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.362-367
    • /
    • 2003
  • Recentlry, High accuracy and precision are required in various industrial field. To obtain the surface roughness with range from several 10nm to several nm in inner cutting, we need a ultra-precision machine, single diamond tool, cutting condition, and the study of materials. It is very difficult to obtain the mirror surface without new technique. In this paper, Using the new tool holder as well as the ultra precision diamond cutting, we directly processed the inside of an aluminum alloy in order to obtain mirror surface. We have considered the length of tool holder when we design the tool holder. From experimental results, we believe that the new tool holder will improve inner cutting.

  • PDF

복합 압전필름형 가속도계를 이용한 초정밀 선반 공구동력계의 개발에 관한 연구 (A Development of Combined-Type Tool Dynamometer for Ultraprecision Lathe with Piezo-Film Accelerometer)

  • Kim, J.D.;Kim, D.S.
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.87-96
    • /
    • 1995
  • The cutting force is the most important variable to understand the mechanics of ultra-precision machining. Most dynamometers, however, monitor the static cutting force only. But it is necessary to measure the dynamic cutting force to clarify the machinability of the material, the formation of the chip, chatter and the wear of the tool. In this research, measurement of the dynamic cutting force in order to clarify the machin-ability of the material, the formation of the chip, chatter and the wear of the tool has been conducted. A combined-type dynamometer which could measure the static cutting force and the dynamic cutting force by use of strain gauges and a piezo-film accelerometer has been developed. An analysis of the dynamometer also has been carried out.

  • PDF