• Title/Summary/Keyword: 초점면배열

Search Result 28, Processing Time 0.033 seconds

A Study on the Improvement of Image Quality for a Thermal Imaging System with focal Plane Array Typed Sensor (초점면 배열 방식 열상 카메라 시스템의 화질 개선 연구)

  • 박세화
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.27-31
    • /
    • 2000
  • Thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main Part of the system is thermal camera in which a focal plane array typed sensor is introduced The sensor detects mid-range infrared spectrum or target objects and then it output generic video signal which should be processed to form a thermal image frame. A digital signal processor(DSP) in the system inputs analog to digital converted data. performs algorithms to improve the thermal images and then outputs the corrected frame data to frame buffers for NTSC encoding and for digital outputs.. To enhance the quality of the thermal images, two point correction method is applied. Figures indicate that the corrected thermal images are much improved.

  • PDF

Fabrication of High Performance and Low Power Readout Integrated Circuit for $320{\times}256$ IRFPA ($320{\times}256$ 초점면배열 적외선 검출기를 위한 고성능 저 전력 신호취득회로의 제작)

  • Kim, Chi-Yeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.152-159
    • /
    • 2007
  • This paper describes the design, fabrication, and measurement of ROIC(ReadOut Integrated Circuit) for $320{\times}256$ IRFPA(InfraRed Focal Plane Array). A ROIC plays an important role that transfer photocurrent generated in a detector device to thermal image system. Recently, the high performance and low power ROIC adding various functions is being required. According to this requirement, the design of ROIC focuses on 7MHz or more pixel rate, low power dissipation, anti-blooming, multi-channel output mode, image reversal, various windowing, and frame CDS(Correlated Double Sampling). The designed ROIC was fabricated using $0.6{\mu}m$ double-poly triple-metal Si CMOS process. ROIC function factors work normally, and the power dissipation of ROIC is 33mW and 90.5mW at 7.5MHz pixel rate in the 1-channel and 4-channel operation, respectively.

Signal Processor Design of Scanning Type Thermal Imaging System using IRFPA (주사방식 초점면 배열 열상장비의 신호처리기 설계)

  • Hong, S.M.;Yoon, E.S.;Yu, W.K.;Park, Y.C.;Lee, J.H.;Song, I.S.;Yum, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2600-2602
    • /
    • 2004
  • 열상장비는 물체가 방출하는 적외선 영역의 미약한 에너지를 검출하여 눈에 보이는 영상으로 변환하는 장비이다. 주간과 동일한 영상을 야간에도 획득할 수 있기 때문에 야간 감시등 군사용 장비로 활용되지만 최근에는 송전선로의 이상 유무 판단, 저장 탱크의 저장량 확인, 사스 환자의 체열 검색 등 산업계와 의료계의 이용도 증가하고 있다. 본 논문에서는 최신 기술인 주사방식 초점면 배열 열상장비의 아날로그 및 디지털신호처리기 설계와 제작 기술을 다룬다. $480{\times}6$ 배열의 고밀도 검출 소자를 이용하여 고속, 저잡음 신호처리를 함으로써 안정된 열 영상을 실시간으로 획득하였다.

  • PDF

A method for measuring tonal noise of underwater vehicle using virtual synthetic array in near-field (근접장에서 가상 합성 배열을 이용한 수중 이동체의 토널 소음 측정 방법)

  • Kang, Tae-Woong;Lee, Guen-Hyeok;Kim, Ki-Man;Han, Min-Su;Choi, Jae-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.443-450
    • /
    • 2018
  • A receiving array system can be applied for tonal noise analysis of underwater vehicles, but it is difficult to install and operate, and a lot of cost is required. In order to overcome this problem, this paper proposes a method to measure the tonal noise of underwater vehicle after synthesizing a virtual array using single receiver. The proposed method compensates the Doppler frequency and time delay caused by the movement of the underwater sound source and applies the focused beamforming technique. The performance of the proposed method was analyzed via simulation.

A Study of the Scene-based NUC Using Image-patch Homogeneity for an Airborne Focal-plane-array IR Camera (영상 패치 균질도를 이용한 항공 탑재 초점면배열 중적외선 카메라 영상 기반 불균일 보정 기법 연구)

  • Kang, Myung-Ho;Yoon, Eun-Suk;Park, Ka-Young;Koh, Yeong Jun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.146-158
    • /
    • 2022
  • The detector of a focal-plane-array mid-wave infrared (MWIR) camera has different response characteristics for each detector pixel, resulting in nonuniformity between detector pixels. In addition, image nonuniformity occurs due to heat generation inside the camera during operation. To solve this problem, in the process of camera manufacturing it is common to use a gain-and-offset table generated from a blackbody to correct the difference between detector pixels. One method of correcting nonuniformity due to internal heat generation during the operation of the camera generates a new offset value based on input frame images. This paper proposes a technique for dividing an input image into block image patches and generating offset values using only homogeneous patches, to correct the nonuniformity that occurs during camera operation. The proposed technique may not only generate a nonuniformity-correction offset that can prevent motion marks due to camera-gaze movement of the acquired image, but may also improve nonuniformity-correction performance with a small number of input images. Experimental results show that distortion such as flow marks does not occur, and good correction performance can be confirmed even with half the number of input images or fewer, compared to the traditional method.

A Remote Measurement Technique for Rock Discontinuity (암반 불연속면의 원격 영상측량 기법)

  • 황상기
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.205-214
    • /
    • 2001
  • A simple automated measuring method for planar or linear features on the rock excavation surface is presented. Attitude of the planar and linear feature is calculated from 3D coordinates of points on the structures. Spatial coordinates are calculated from overlapped stereo images. Factors used in the calculation are (1) local coordinates of the left and right images, (2) the focal length of cameras, and (3) the distance between two cameras. A simple image capturing device and an image treatment routine coded by Visual Basic and GIS components are constructed for the remote measurements, The methodology shows less than 1 cm error when a point is measured from 179 cm in distance. The methodology is tested at the excavation site in PaiChai University. Remotely measured result matches well with the manual measurement within the reasonable error range.

  • PDF

Design of Readout Circuit With Smart Reset Control for Improving Dynamic Range of LWIR FPAs (초점면 배열 원적외선 검출기의 동작범위 향상을 위한 리셋 조정 회로)

  • Woo, Doo-Hyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.38-45
    • /
    • 2010
  • A new readout circuit involving a pixel-level reset control was studied for 2-D long wavelength infrared focal plane arrays. The integration time of each pixel can be optimized individually and automatically. Hence, the readout circuit has a wide dynamic range and good signal-to-noise ratio characteristics. The readout circuit was fabricated with a $0.35{\mu}m$ 2-poly 4-metal CMOS process for a $128{\times}128$ long wavelength infrared HgCdTe array with a pixel size of $50{\mu}m{\times}50{\mu}m$. The smart reset control with two-step background suppression improves the signal-to-noise ratio to 87dB and the dynamic range to 95.8dB.

Studies on the millimeter-wave Passive Imaging System II (밀리미터파 수동 이미징 시스템 연구 II)

  • Jung, Min-Kyoo;Chae, Yeon-Sik;Kim, Soon-Koo;Yoo, Jin-Seob;Koji, Mizuno;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.105-110
    • /
    • 2007
  • We have built the millimeter-wave passive imaging system with a lens and mechanical scan antenna. The lens was designed based on optical theory in order to focus millimeter-wane. A full image was taken from image points scanned by Placing antenna at the representative focal plane selectively. An integrated antenna array device for low-loss and low-noise with the array of 4 by 1, where components such as antenna, balun, MMIC, and detector were assembled on a sin91e substrate, and a fermi tapered slot antenna with high-gain and low-side lobe were used for elements of this millimeter-wave passive imaging system. Two dimensional antenna arrangement on focal plane was achieved in this imaging system.