• Title/Summary/Keyword: 초장대 터널

Search Result 16, Processing Time 0.023 seconds

The review about ultra long subsea tunnel design under high water pressure (고수압 초장대 해저터널에 관한 연구)

  • Jun, Duk-Chan;Kim, Ki-Lim;Hong, Eui-Joon;Kim, Chan-Dong;Lee, Young-Joon;Hong, Cheor-Hwa
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.829-843
    • /
    • 2017
  • Subsea tunnel needs to be built over 50 km long to connect between nations and continents. However there are only 19 tunnels longer than 5 km until recently. And there is no history of constructing and operating tunnel longer than 50 km. In Korea, subsea tunnels with a length of more than 50 km are being planned, such as Korea~Japan, Korea~China, Honam~Jeju subsea tunnels. Because of the geographical conditions of Korea, most of these tunnels are inter-contry tunnels. So technology preemption for the subsea tunnel construction is getting more and more important. Most of these subsea tunnels are ultra-long tunnels under high water pressure conditions. So new technologies are required such as ventilation and disaster prevention of high-speed tunnels, securing of structural stability under high pressure conditions, and pressure reduction in high-speed conditions. These technologies are different from those of ground tunnels. Therefore, this paper describes the ultra-long subsea tunnel design under high water pressure of maximum 16 bars through the Honam (land) - Jeju (island) virtual subsea project. We proposed a reasonable solution to various problems such as securing structural stability in high pressure condition and ventilation disaster prevention system of ultra long-tunnel.

A study on the characteristics for temporary ventilation of long subsea tunnels - focused on the current situation and improvement requirements (초장대 해저터널의 공사중 환기 특성에 관한 기초연구 - 현황 및 개선필요사항 중심)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Kim, Jong-Won;Lee, Ju-Kyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.153-166
    • /
    • 2015
  • Long subsea tunnel to be built below the seabed, as compared to the general railway tunnel, is subject to many restrictions in terms of spatial limitation when vertical or inclined shafts are built for the purpose of ventilation and fire safety. So, the construction of some artificial island is required to provide ventilation. But, because of construction difficulty and cost increase, it is necessary to minimize the artificial island construction. The longer ventilation distance is, the more fresh air requirement is needed. When supply airflow becomes excessive, duct size is restricted by the limitations of structure clearance and fan pressure and power increase exponentially. Therefore, in order to build a long subsea tunnel, it is necessary to overcome these practical problems and to develop technical solution that can keep the comfortable condition of tunnel environment during construction. In this study, as on ventilation method development suitable for long subsea tunnel, through comparison of temporary ventilation capacity calculation methods during construction phase, domestic and abroad, the application of Swiss SIA 196 code is found suitable for long subsea tunnel. And, through experiment on leakage of the duct connector, we confirmed that the leakage ratio per 100 m of domestic duct connection type is between 1.5~3.0%. Based on S-class duct of SIA 196 code, ventilation distance is 10.2 km, So, ventilation distance can be longer if duct connection method is improved. So, we confirmed that the improvement of leakage ratio is key issue in the construction-phase ventilation of long subsea tunnel.

A Case Study on M & E Design for Double-Deck Tunnel in Urban Area (도심지 대심도 복층터널의 환기 및 방재계획)

  • Byun, Sang-Hun;Jeong, Jae-Ho;Jun, Duk-Chan;Shin, Il-Jae;Sim, Dong-Hyun
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.281-286
    • /
    • 2011
  • The west underground express way is a recent initiated BTO (Build-Transfer-Operate) project for releasing heavy traffic of the existing west express way which is notorious on-ground road for extremely traffic stuck area in the west of Seoul, South Korea. The new express way for light vehicles is the first double-deck tunnel ever designed in South Korea and 10.91 km long including both open cut structures and concrete lining with middle-deck in bored tunnel. Because the new express way is going through underground of heavily populated area, mechanical & electrical design for the safety of drivers in tunnel is one of the most important parts among many design issues. This paper discusses M & E design focuses including ventilation-evacuation plan and various safety facilities.

A study on the air leakage performance improvement of duct coupling for temporary ventilation of long subsea tunnel (초장대 해저터널의 공사중 덕트 접속부의 누풍 성능 개선에 관한 연구)

  • Jo, Hyeong-Je;Min, Dea-Kee;Kim, Jong-Won;Lee, Ju-Kyung;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.319-333
    • /
    • 2017
  • The construction of long sub-sea tunnel does not provide the favorable condition for the installation of ventilation system to be used during construction due to the constrained construction space. For the ventilation system required during construction, the artificial island where ventilation shaft is located is constructed at some location along the sub-sea tunnel route, which requires a high construction cost. Therefore, it is intended, as much as possible technically, to minimize the construction of artificial island. However, this requires a longer distance between ventilation shafts, there-by causing increased air leakage at the ventilation duct connection points due to the higher fan pressure being required to deliver ventilation air. Previously the air leakage was studied as an important issue. In this study experiments were carried out to develop the improved duct connection method considering various conditions such as, tunnel length, etc. Additionally, its performance results with leakage rates are shown and compared to the "S" class leakage rate of SIA. As a result, the new duct coupling type of improved method is analyzed as applicable to such a 30 km long tunnel with the leakage rate of $1.46mm^2/m^2$, which is better performance than SIA leakage rates.