• Title/Summary/Keyword: 초임계 사이클

Search Result 34, Processing Time 0.019 seconds

Cooling Heat Transfer Characteristics of CO2 in a Brazing Type Small Diameter Copper Tube (브레이징식 동세관내 CO2의 냉각 열전달 특성)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.827-834
    • /
    • 2009
  • The cooling heat transfer coefficient of $CO_2$ in a brazing type small diameter tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a $CO_2$ compressor, a mass flow meter, an evaporator and a brazing type small diameter tube as a test section. The mass flux of $CO_2$ is $400{\sim}1600$ [kg/$m^2s$], the mass flowrate of coolant were varied from 0.15 to 0.3 [kg/s], and the cooling pressure of gas cooler were from 8 to 10 [MPa]. The cooling heat transfer coefficients of the brazing type small diameter copper tube is about $4{\sim}11.7%$ higher than that of the conventional type small diameter copper tube. In comparison with test results and existing correlations, correlations failed to predict the cooling heat transfer coefficient of $CO_2$ in a brazing type small diameter copper tube. therefore, it is necessary to develope reliable and accurate predictions determining the cooling heat transfer coefficient of $CO_2$ in a brazing type small diameter copper tube.

Experimental Study on the Performance Characteristics of a CO2 Air-conditioning System for Vehicles (자동차용 CO2 에어컨 시스템의 성능 특성에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • In this study, a $CO_2$ air-conditioning system was investigated with different types of electrically driven compressors, parallel flow type gas cooler, four-pass type evaporator, internal heat exchanger integrated with accumulator, and electric expansion valve. The experimental study was conducted under various operating conditions (ie., different rotational compressor speeds, air inlet temperatures and air velocity coming into heat exchangers). The experimental results showed the cooling capacity was 3.5kW at $35^{\circ}C$ ambient temperature when the vehicle was idle (ie., the worst condition for cooling off the gas cooler). In terms of performance effect of the compressor, the e-RP model had a slightly better cooling capacity and coefficient of performance than the e-GR model under the same test conditions. An experimental equation for optimum cooling-performance control was also suggested based on the results. A high-pressure control algorithm for the super critical cycle was determined to achieve both maximum cooling performance and efficient energy consumption. The results from the experimental equation coincided with those of previous experimental studies.

Performance analysis for load control of R744(carbon dioxide) transcritical refrigeration system using hot gas by-pass valve (핫가스 바이패스 밸브를 이용한 R744용 초임계 냉동사이클의 부하제어에 대한 성능 분석)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2189-2194
    • /
    • 2009
  • The automatic hot gas by-pass technique is applied to control the capacity of refrigeration and air-conditioning system when operating at part load. In the scheme, the hot gas from the compressor is extracted and injected into the outlet of an evaporator through a hot gas by-pass valve. Thus, In this paper, the hot gas by-pass scheme for CO2 is discussed and analyzed on the basis of mass and energy conservation law. A comparative study of the schemes is performed in terms of the coefficiency of performance (COP) and cooling capacity. The operating parameters considered in this study include compressor efficiency, superheating degree, outlet temperature of gas cooler and evaporating temperature in the R744 vapor compression cycle. The main results were summarized as follows : the superheating degree, outlet temperature and evaporating temperature of R744 vapor compression refrigeration system have an effect on the cooling capacity and COP of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle using R744.

Evaluation of High-Temperature Tensile Property of Diffusion Bond of Austenitic Alloys for S-CO2 Cycle Heat Exchangers (고온 S-CO2 사이클 열교환기용 스테인리스강 및 Fe-Cr-Ni 합금 확산 접합부의 고온 인장 특성평가)

  • Hong, Sunghoon;Sah, Injin;Jang, Changheui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1421-1426
    • /
    • 2014
  • To improve the inherent safety of the sodium-cooled fast reactor (SFR), the supercritical $CO_2$ ($S-CO_2$) Brayton cycle is being considered as an alternative power conversion system to steam the Rankine cycle. In the $S-CO_2$ system, a PCHE (printed circuit heat exchanger) is being considered. In this type of heat exchangers, diffusion bonding is used for joining the thin plates. In this study, the diffusion bonding characteristics of various austenitic alloys were evaluated. The tensile properties were measured at temperatures starting from the room temperature up to $650^{\circ}C$. For the 316H and 347H types of stainless steel, the tensile ductility was well maintained up to $550^{\circ}C$. However, the Incoloy 800HT showed lower strength and ductility at all temperatures. The microstructure near the bond line was examined to understand the reason for the loss of ductility at high temperatures.