• Title/Summary/Keyword: 초음파 피로 시험

Search Result 49, Processing Time 0.023 seconds

Variation of Fatigue Properties in Nanoskinned Ti-6Al-4V - Rotating Bending and Axial Loading Tension-Compression Cycle - (Ti-6Al-4V 재의 UNSM 처리에 의한 피로특성변화 - 회전굽힘 피로시험과 축하중 인장압축 피로시험 비교 -)

  • Suh, Min-Soo;Pyoun, Young-Shik;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.443-449
    • /
    • 2012
  • Nanoskins were fabricated on a Ti-6Al-4V material by carrying out various surface treatments, i.e., deep rolling, laser shot peening, and ultrasonic nanocrystal surface modification (UNSM). These surface treatments are newly developed techniques and are becoming more popular for industrial applications. Fatigue tests were carried out using material test system (MTS); these tests included the axial loading tension-compression fatigue test (R = -1, RT, 5 Hz, sinusoidal wave) and rotating bending fatigue test (R = -1, RT, 3200 rpm). The analysis of the crack initiation pattern in the UNSM-treated material indicated that the crack was interior originating in the axial loading tension-compression cycle, and was surface originating in the bending fatigue test. UNSM treatment significantly improved the fatigue strength for the regime of above $10^6$ cycles that S-N curve of rotating bending stress clearly show the performance of a 5 mm titanium specimen after UNSM treatment is similar to that of an untreated 6 mm titanium specimen.

Degradation Assessment of Aluminum Alloy 6061-T6 Using Ultrasonic Attenuation Measurements (초음파 감쇠 측정을 이용한 Al6061-T6 열화 평가)

  • Kim, Hun-Hee;Kang, To;Seo, Mu-Kyung;Song, Sung-Jin;Kim, Hak-Joon;Kim, Kyung-Cho;Kim, Young-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.20-25
    • /
    • 2013
  • Ultrasonic methods are widely used to degradation assessment. Remaining-life cycle of metal can be estimated by ultrasonic parameters because ultrasonic velocity and attenuation are affected by change of material properties with accumulated fatigue in the metal. Therefore, in this study, we will estimate overall change of material properties by 2D C-scan image. Fatigued aluminum alloy 6061-T6 samples from 0 to 85% were prepared for evaluating fatigue life cycle. Also, degraded image of materials using attenuation is proposed to estimate degree of material degradation for determining degraded area of fatigued samples. Finally, we will predicts process pf degradation with measured attenuation of fatigued aluminum alloy 6061-T6 samples.

A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints (복합재료-금속 접착접합부의 피로손상의 실시간 평가기법)

  • Kwon, Oh-Yang;Kim, Tae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.6
    • /
    • pp.439-447
    • /
    • 1999
  • One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction ($E/E_o$) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures.

  • PDF

Analysis of Heat Generation Mechanism in Ultrasound Infrared Thermography (초음파-적외선 열화상 기법에 의한 피로균열 검출에 있어 발열 메커니즘 분석)

  • Choi, Man-Yong;Lee, Seung-Seok;Park, Jeong-Hak;Kim, Won-Tae;Kang, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.10-14
    • /
    • 2009
  • Heat generation mechanism of ultrasound infrared thermography is still not well understood, yet and there are two reliable assumptions of heat generation, friction and thermo-mechanical effect. This paper investigates the principal cause of heat generation at fatigue crack with experimental and numerical approach. Our results show most of heat generation is contributed by friction between crack interface and thermo-mechanical effect is a negligible quantity.

Depth Sizing of Notch Fatigue Crack Using Diffracted Ultrasonic Wave (회절초음파를 이용한 노치 피로균열의 균열깊이 평가)

  • Jin, Mei-Ling;Lee, Tae-Hun;Park, Byung-Jun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.405-414
    • /
    • 2009
  • This paper proposed a methodology based on ultrasonic diffraction technique to inspect the depth of a crack initiated from a notch of CT specimen by fatigue test, and its usefulness was verified by experiments. Especially, in order to identify accurately the diffractive waves from the crack tip in the situation where there are extra diffractive elements such as a notch, we have tried imaging by transducer scan and analyzed the propagation path of diffracted wave. Two specimens with and without a crack were experimented. Higher frequency and larger refractive angle of transducer showed a tendency to decrease the error in the measurements, and the measured crack depth showed an error less than 0.38 mm in case of 4 MHz $60^{\circ}-60^{\circ}$. The proposed methodology is applicable to weak diffractive sources, and so that it would be useful to inspect micro cracks and for their depth sizing.

Evaluation of Corrosion Fatigue Characteristics of 12Cr Steel Using Backward Radiated Ultrasound (후방복사된 초음파를 이용한 12Cr강 부식 피로특성 평가)

  • Kwon, Sung-Duk;Yoon, Seok-Soo;Song, Sung-Jin;Bae, Dong-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.397-401
    • /
    • 2000
  • The corrosion-fatigue characteristics of the 12Cr steel, which is widely used in fossil power plants as a turbine blade material, are evaluated nondestructively by use of the Rayleigh surface wave. In this study, the frequency dependency of the Rayleigh surface wave is investigated indirectly by measuring the angular dependency of the backward radiation of the incident ultrasonic wave in the aged specimens, and then compared to the corrosion-fatigue characteristics. The width of the backward radiation profile decreases as the increase of the aging temperature, which seems to result from the increase of the effective degrading layer thickness. This parameter also shows an inversely proportionality to the exponent, m, in the Paris law which predicts the crack size increasement due to fatigue. The result observed in this study demonstrates high potential of the backward radiated ultrasound as a tool for the nondestructive evaluation of the corrosion-fatigue characteristics of the aged materials.

  • PDF

Nondestructive Techniques for Characterization of Microstructural Evolution during Low Cycle Fatigue of Cu and Cu-Zn Alloy (Cu와 Cu-Zn 합금의 저주기피로 동안 발달한 미세조직 평가를 위한 비파괴기술)

  • Kim, Chung-Seok;Jhang, Kyung-Young;Hyun, Chang-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.32-39
    • /
    • 2011
  • The object of this study is to evaluate and discriminate nondestructively the dislocation substructures of Cu and Cu-Zn alloy subjected to the low-cycle-fatigue. The ultrasonic wave velocity, electrical resistivity and positron annhilation lifetime(PAL) were measured to the nondestructive testing. Cyclic fatigue test of Cu and Cu-Zn alloy with much different stacking fault energies was conducted and the correlations between dislocation behavior and nondestructive parameters were studied. Dislocation cell substructure was developed in Cu, while planar array of dislocation structure was developed in Cu-35Zn alloy only increasing dislocation density with fatigue cycles. Decrease in ultrasonic wave velocity, increase in electrical resistivity and PAL were shown because of the development of lattice defects, dislocations and vacancies, by cyclic fatigue at room temperature. In contrast to Cu-Zn alloy of the planar-array dislocation substructure showing continuous changes in the nondestructive parameters, it does not make any noticeable changes in the nondestructive parameters after the evolution of dislocation cell substructure in Cu.

Detection of Micro-Crack Using a Nonlinear Ultrasonic Resonance Parameters (비선형 초음파공명 특성을 이용한 미세균열 탐지)

  • Cheong, Yong-Moo;Lee, Deok-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.369-375
    • /
    • 2012
  • In order to overcome the detection limit by the current nondestructive evaluation technology, a nonlinear resonant ultrasound spectroscopy(NRUS) technique was applied for detection of micro-scale cracks in a material. A down-shift of the resonance frequency and a variation of normalized amplitude of the resonance pattern were suggested as the nonlinear parameter for detection of micro-scale cracks in a materials. A natural-like crack were produced in a standard compact tension(CT) specimen by a low cycle fatigue test and the resonance patterns were acquired in each fatigue step. As the exciting voltage increases, a down-shift of resonance frequency were increases as well as the normalized amplitude decrease. This nonlinear effects were significant and even greater in the cracked specimen, but not observed in a intact specimen.

Evaluation of Micro Crack Using Nonlinear Acoustic Effect (초음파의 비선형 특성을 이용한 미세균열 평가)

  • Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.352-357
    • /
    • 2008
  • The detection of micro cracks in materials at the early stage of fracture is important in many structural safety assurance problems. The nonlinear ultrasonic technique (NUT) has been considered as a positive method for this, since it is more sensitive to micro crack than conventional linear ultrasonic methods. The basic principle is that the waveform is distorted by nonlinear stress-displacement relationship on the crack interface when the ultrasonic wave transmits through, and resultantly higher order harmonics are generated. This phenomenon is called the contact acoustic nonlinearity (CAN). The purpose of this paper is to prove the applicability of CAN experimentally by detection of micro fatigue crack artificailly initiated in Aluminum specimen. For this, we prepared fatigue specimens of Al6061 material with V-notch to initiate the crack, and the amplitude of second order harmonic was measured by scanning along the crack direction. From the results, we could see that the harmonic amplitude had good correlation with COD and it can be used to detect the crack depth in more accurately than the common 6 dB drop echo method.

A Study on the VHCF Fatigue Behaviors of Hydrogen Attacked Inconel 718 Alloy (수소취화된 인코넬 718의 VHCF(Very High Cycle Fatigue) 피로특성에 관한 연구)

  • Suh, Chang-Min;Nahm, Seung-Hoon;Kim, Jun-Hyong;Pyun, Young-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.637-646
    • /
    • 2016
  • This study is to investigate the influence of hydrogen attack and UNSM on fatigue behaviors of the Inconel 718 alloy. The decrease of the fatigue life between the untreated and the hydrogen attacked material is 10-20%. The fatigue lives of hydrogen attacked specimen decreased without a fatigue limit, similar to those of nonferrous materials. Due to hydrogen embrittlement, about 80% of the surface cracks were smaller than the average grain size of $13{\mu}m$. Many small surface cracks caused by the embrittling effect of hydrogen attack were initiated at the grain boundaries and surface scratches. Cracks were irregularly distributed, grew, and then coalesced through tearing, leading to a reduction of fatigue life. Results revealed that the fatigue lives of UNSM-treated specimens were longer than those of the untreated specimens.