• Title/Summary/Keyword: 초음파 펄스

Search Result 208, Processing Time 0.033 seconds

Determination of the Optimum-Bandwidth of Chirp-Signal for Pulse Compression Technique (펄스압축 기술을 위한 chirp 신호의 최적대역폭 결정)

  • Ko, Dae-Sik;Moon, Gun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.5-9
    • /
    • 1997
  • In this paper, when we use the chirp signal as input signal of ultrasonic signal system the technique for determining the bandwidth of the chirp signal that maximizes the amplitude of the compressed ultrasonic echo signal has been studied. In ultrasonic signal processing systems, the signal-to-noise ratio of the echo signal can be too low due to damping and scattering of the ultrasonic wave during transmission. Method of pulse compression using chirp signal is a means to increase the signal-to-noise ratio in ultrasonic pulse-echo systems. Simulation and experimental results showed that the output signal of ultrasonic system was increased by pulse width of chirp signal and the optimum-bandwidth of the chirp signal was 1.15 times larger than the bandwidth of the ultrasonic system.

  • PDF

Thickness Measurement by Using Cepstrum Ultrasonic Signal Processing (켑스트럼 초음파 신호 처리를 이용한 두께 측정)

  • Choi, Young-Chul;Park, Jong-Sun;Yoon, Chan-Hoon;Choi, Heui-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.290-298
    • /
    • 2014
  • Ultrasonic thickness measurement is a non-destructive method to measure the local thickness of a solid element, based on the time taken for an ultrasound wave to return to the surface. When an element is very thin, it is difficult to measure thickness with the conventional ultrasonic thickness method. This is because the method measures the time delay by using the peak of a pulse, and the pulses overlap. To solve this problem, we propose a method for measuring thickness by using the power cepstrum and the minimum variance cepstrum. Because the cepstrums processing can divides the ultrasound into an impulse train and transfer function, where the period of the impulse train is the traversal time, the thickness can be measured exactly. To verify the proposed method, we performed experiments with steel and, acrylic plates of variable thickness. The conventional method is not able to estimate the thickness, because of the overlapping pulses. However, the cepstrum ultrasonic signal processing that divides a pulse into an impulse and a transfer function can measure the thickness exactly.

Development of Ultrasound Sector B-Scanner(I)-Front End Hardware Part- (초음파 섹터 B-스캐너의 개발(I)-프론트 엔드 부분-)

  • 권성재;박종철
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.59-66
    • /
    • 1986
  • A prototype ultrasound sector B-scanner has been developed where the front-end hardware refers to all the necessary circuits for transmitting the ultrasound pulses into the human body and receiving the reflected echo signals from it. The front-end hardware can generally be divided into three parts, i.e., a pulse generator for insonification, a receiver which is responsible for processing of low-level analog signals, and a steering controller for driving the mechanical sector probe whose functions and design concepts are described in this paper. The front-end hardware is implemented which incorporates the following features: improvement of the axial resolution using a circuit which reduces the ring-down time, flexibility of generating time-gain compensation curve, and adoption of a one-chip microcomputer for generating the rate pulses based on the sensor output waveforms.

  • PDF

A Study on the Measurement of Foreign Material in Dissimilar Metal Contact Using Pulse Laser and Confocal Fabry-Perot Interferometer (펄스 레이저와 CFPI를 이용한 이종금속 접촉부의 이물질 측정에 관한 연구)

  • Hong, Kyung-Min;Kang, Young-June;Park, Nak-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.160-164
    • /
    • 2013
  • A laser ultrasonic inspection system is a non-contact inspection device which generates and measures ultrasonics by using laser beam. A laser ultrasonic inspection system provides a high measurement resolution because the ultrasonic signal generated by a pulse laser beam has a wide-band spectrum and the ultrasonic signal is measured from a small focused spot of a measuring laser beam. In this study, galvanic corrosion phenomenon was measured by non-destructive and non-contact method using the laser. The case of mixed foreign material on the part of corrosion was assumed and laser ultrasonic experiment was conducted. Ultrasonic was generated by pulse laser from the back side of the specimen and ultrasonic signal was acquired from the same location of the front side using continuous wave laser and Confocal Fabry-Perot Interferometer(CFPI). The characteristic of the ultrasonic signal of exist foreign material part was analyzed and the location and size of foreign material was measured.

Technique of Transformer Diagnosis Using Ultrasonic Sensor (초음파 센서를 이용한 변압기 예방진단 기술 연구)

  • 권동진;최수안;박형준;곽희로;정찬수;전희종;김재철
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.2
    • /
    • pp.46-53
    • /
    • 1994
  • This paper presents a diagnosis teclmique using ultrasonic sensors for monitoring the growth of partial discharge in power transformers. This teclmique counts the ultrasonic pulses generated from partial discharge over a threshold leveL In experiments, a ultrasonic generator and the point to plane electrodes generated ultrasonic pulses. With a constant voltage between the electrodes, the ultrasonic pulses over a threshold were a fairly constant. When the voltage increased or insulation paper was inserted between the electrodes, the partial discharge increased. In this case the number of ultrasonic pulses also increased and therefore the proposed teclmiques successfully diagnosed the growth of partial discharge.

  • PDF

Assessment of Ultrasonic Pulse Velocity Method for Early Detection of Frost Damage in Concrete (콘크리트의 초기동해 진단을 위한 초음파 속도법의 적용 가능성 평가)

  • Moon, Sohee;Lee, Taegyu;Choi, Heesup;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.193-202
    • /
    • 2024
  • This research delves into the evaluation of the suitability of ultrasonic pulse velocity as a diagnostic tool for early detection of frost damage in concrete. The investigation involves the measurement of compressive strength and ultrasonic pulse velocity concerning the depth of freezing for individual mortar specimens, followed by an analysis of their microstructure and their interrelation. The findings indicate a consistent decrease in both compressive strength and ultrasonic pulse velocity with increasing freezing depth. Furthermore, a correlation between compressive strength and ultrasonic pulse velocity concerning the depth of early frost damage is established. Consequently, the study asserts the potential of utilizing the ultrasonic pulse velocity method for early detection of frost damage in concrete, with prospects for quantifying the depth of damage through further research endeavors.

Ultrasonic Pulses Characteristics in Lightweight Fine Aggregate Concrete under Various Load Histories (하중 이력에 따른 경량 잔골재 콘크리트의 초음파 특성)

  • Yoo, Kyung-Suk;Kim, Jee-Sang;Kim, Ik-Beam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.209-216
    • /
    • 2014
  • One of the widely used NDT(Non-destructive techniques) is the ultrasonic pulse velocity (USPV) method, which determines the travel time of the ultrasonic pulse through the tested materials and most studies were focused on the results expressed in time domain. However, the signal of ultrasonic pulse in time domain can be transformed into frequency domain, through Fast fourier transform(FFT) to give more useful informations. This paper shows a comparison of changes in the pulse velocity and frequency domain signals of concrete for various load histories using lightweight fine aggregates. The strength prediction equation for normal concrete using USPV cannot be used to estimate lightweight fine aggregate concrete strength. The signals in frequency domain of ultrasonic pulse of lightweight fine aggregate concrete does not show any significant difference comparing with those of normal concrete. The increases in stress levels of concrete change the pulse velocities and maximum frequencies, however the apparent relationship between themselves can not be found in this experiment.

Characteristics of Ultrasonic Signals Caused by Corona Discharge in Air (코로나방전에 의한 공중(空中)초음파 신호 특성)

  • 이상우;김인식;이동인;이광식;이동희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.38-46
    • /
    • 1999
  • Measurerments of ultrasonic signals caused by corona discharges were perforrred by using an ultrasonic meeasurerment technique to analyze the deve1qxrent states of coronas in a high-voltage power apparatus. We also examined the relationship between discharge magnitude and ultrasonic pulse number to diagnose the deterioration of electrical insulation by corona discharges. From these results, it was found that ultrasonic signals due to corona discharges can be firstly detected at the peak value of positive polarities prior to the breakdown voltages, and the magnitude of ultrasonic signals was closely related to the current pulses by the corona discharges when ac voltages were gradually raised, and it appeared that ultrasonic pulse number was proportional to discharge magnitude. Attenuation, tirre-delaying and directivity charocteristics of ultrasonic signals propagated to air by using ultrasonic oscillation and receiving systems are feJXlrt.ed as a basic data of ultrasonic measurements in out-door HV apparatus.aratus.

  • PDF

A Study on Manufacture and Properties of Ultrasonic Transducers made on Multi-layered PVDF Films (PVDF 다층막을 이용한 초음파 변환기의 제작 및 특성조사)

  • 김정구;배종림
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.23-28
    • /
    • 1998
  • 고분자 압전 필름인 PVDF를 이용하여 단일막과 이층막의 초음파 변환기를 제작하 여 임펄스 응답특성을 이론식에서 계산하여 실험적으로 확인하여 보았다. 또한 RF 펄스를 이용하여 초음파 변환기의 다층막에 따른 주파수 특성을 조사하였다. 그 결과 임펄스 응답 특성은 이론식과 잘 일치하였으며, 단일막의 변환기가 이층막에 비하여 지속시간이 짧은 펄 스를 나타내었다. RF펄스에 대한 주파수특성은 이층막의 변환기가 단일막에 비하여 광대역 의 특성을 나타냄을 알 수 있었다.

  • PDF

Nondestructive Evaluation Technique of Painted Sandwich Control Surfaces of CN-235 using Full-field Pulse-echo Ultrasonic Propagation Imaging System (전영역 펄스-에코 초음파전파영상화 시스템의 CN-235의 도색된 샌드위치 조종면 In-situ 비파괴평가 기술)

  • Hong, Seung-Chan;Lee, Jung-Ryul;Park, Jongwoon
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.288-292
    • /
    • 2016
  • In this paper, a novel ultrasonic propagation imaging system, called a full-field pulse-echo ultrasonic propagation imaging (FF PE UPI) system is introduced. The system nondestructively inspected targets with two-axis translation stage. The coincident laser beams for ultrasonic sensing and generation are scanned and pulse-echo mode laser ultrasounds are captured. This procedure makes it possible to generate full-field ultrasound in through-the-thickness direction as large as the scan area. Structural inspection results in the form of full-field ultrasonic wave propagation videos are introduced, which are painted sandwich control surfaces. In addition, the inspection results of FF PE UPI system are compared with conventional ultrasonic testing methods such as waterjet and portable C-scan.