• Title/Summary/Keyword: 초음파 위성 시스템

Search Result 14, Processing Time 0.02 seconds

Improved Localization Algorithm for Ultrasonic Satellite System (초음파위성시스템을 위한 개선된 위치추정 알고리즘)

  • Yoon, Kang-Sup
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.775-781
    • /
    • 2011
  • For the measurement of absolute position of mobile robot in indoor environments, the ultrasonic positioning systems using ultrasound have been researched for several years. Most of these ultrasonic positioning systems to avoid interference between the ultrasound are used for sequential transmitting. However, due to the use of sequential transmitting, the positions of transmitter to receive an ultrasound will change when the mobile robot moves. Therefore the accuracy of positioning is reduced. In this paper, the new position estimation algorithm with weighting factor according to the time of receipt is proposed. By applying the proposed algorithm to existing Ultrasonic Satellite System(USAT), the improved USAT is configured. The positioning performance of the improved USAT with the proposed position estimation algorithm are verified by experiments.

LED Driving Circuit Design of Ultrasonic Speaker System for Sign Board (싸인 보드용 초음파 스피커 상태표시를 위한 LED 구동 회로의 설계)

  • Lee, Kyung-Ryang;Yeo, Sung-Dae;Jang, Young-Jin;Cha, Jae-Sang;Kim, Jin-Tae;Shin, Jae-Kwon;Kim, Seong-Kweon
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.17-20
    • /
    • 2013
  • In this study, we introduce an LED Driving circuit in order that the information state can indicate audio signal gain and radiate pattern of ultrasonic speaker system for a sign board. Ultrasonic speaker system decreases energy loss and transmits the sound farther. Ultrasonic speaker having such characteristics is useful in that it can be widely used in daily life. Additionally, Proposed LED circuit indicates the information state as linear LED brightness taken from interface of ultrasonic speaker system. Designed circuit is confirmed through $0.35{\mu}m$ CMOS process by Dong-bu.

Design of the Crane position control System using GPS and USN (GPS와 USN을 이용한 크레인 위치제어 시스템 설계)

  • Lim, Su-Il;Nam, Si-Byung;Lim, Hae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1520-1525
    • /
    • 2009
  • In this paper, we study and simulate the suggested position control system using GPS and USN to replace the existing control system of a crane. For the correct approach, the position control system of a crane is divided into the control system of the ground station and the mobile station The hardware is comprised of GPS receiving module to receive the position control data of a crane from GPS satellites, bluetooth communication module for the data communication between the ground station and the mobile station, supersonic sensor module for a precise position control of a crane, motor to replace a crane roller, embedded MCU(ATmega128L) and so on. In here, an embedded MCU controls GPS receiving module, bluetooth communication module and supersonic sensor module. The Software is comprised of three programs. Three programs are the program to filter GGA output part in a receiving data of GPS receiving module, the driving program for supersonic sensor module, the digital map program to monitor a crane location. From the simulation results, it is demonstrated that the proposed system has the capability of crane position control with 1cm precision.

An Integrated Navigation System Combining INS and Ultrasonic-Speedometer to Overcome GPS-denied Area (GPS 음영 지역 극복을 위한 INS/초음파 속도계 결합 항법 시스템 설계)

  • Choi, Bu-Sung;Yoo, Won-Jae;Kim, La-Woo;Lee, Yu-Dam;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.228-236
    • /
    • 2019
  • Recently, multi-sensor integration techniques have been actively studied to obtain reliable and accurate navigation solution in GPS (Global Positioning System)-denied harsh environments such as urban canyons, tunnels, and underground roads. In this paper, we propose a low-cost ultrasonic-speedometer utilizing the characteristics of the ultrasonic propagation. An efficient integrated INS (inertial navigation system)/ultrasonic-speedometer navigation system is also proposed to improve the accuracy of positioning in GPS-denied environments. To evaluate the proposed system, car experiments with field-collected measurements were performed. By the experiment results, it was confirmed that the proposed INS/ultrasonic-speedometer system bounds the positioning error growth effectively even though GPS signal is blocked more than 10 seconds and a low-cost MEMS IMU (micro electro mechanical systems inertial measurement unit) is utilized.

Evaluation of Position Error and Sensitivity for Ultrasonic Wave and Radio Frequency Based Localization System (초음파와 무선 통신파 기반 위치 인식 시스템의 위치 오차와 민감도 평가)

  • Shin, Dong-Hun;Lee, Yang-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.183-189
    • /
    • 2010
  • A localization system for indoor robots is an important technology for robot navigation in a building. Our localization system imports the GPS system and consists of more than 3 satellite beacons and a receiver. Each beacon emits both an ultrasonic wave and radio frequency. The receiver in the robot computes the distance from it to the beacon by measuring the flying time difference between ultrasonic wave and radio frequency. It then computes its position with the distance information from more than 3 beacons whose positions are known. However, the distance information includes errors caused from the ultrasonic sensors; we found it to be limited to within one period of a wave (${\pm}2\;cm$ tolerance). This paper presents a method for predicting the maximum position error due to distance information errors by using Taylor expansion and singular value decomposition (SVD). The paper also proposes a measuring parameter such as sensitivity to represent the accuracy of the indoor robot localization system in determining the robot's position with regards to the distance error.

A study on implementation of integrated control system for LED communication based on micro controller (마이크로 콘트롤러에 기반한 LED 조명 통신 종합 제어 시스템 구현에 관한 연구)

  • Lee, JungHoon;Kim, Chan;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.54-58
    • /
    • 2012
  • In this paper, we implemented total monitoring system in which LED light turned on only when user detected and LED light turned out only when user disappeared. This system is composed of two modules, one is HW board based on Micro Controller and the other is SW control system based on Web server. Micro controller board is based on ATMega2560 chip which is connected with Infra Red and Ultra sonic sensors. Web based monitoring system was designed can be used in smart device. The validity of this monitoring system was proved by integration test of two modules.

USAT(Ultrasonic Satellite System) for the Autonomous Mobile Robots Localization (무인 이동 로봇 위치추정을 위한 초음파 위성 시스템)

  • Lee, Dong-Hwal;Kim, Su-Yong;Yoon, Kang-Sup;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.956-961
    • /
    • 2007
  • We propose a new distance measurement method and local positioning system for the autonomous mobile robots localization. The distance measurement method is able to measure long-range distances with a high accuracy by using ultrasonic sensors. The time of flight of the ultrasonic waves include various noises is calculated accurately by the proposed period detecting method. The proposed local positioning system is composed of four ultrasonic transmitters and one ultrasonic receiver. The ultrasonic transmitter and receiver are separated but they are synchronized by RF (Radio frequency) signal. The proposed system using ultrasonic waves is represented as USAT(Ultrasonic Satellite System). USAT is able to estimate the position using the least square estimation. The experimental results show that the proposed local positioning system enables to estimate the absolute position precisely.

Development Activity Tracking System Using Accelerometer and Earth Magnetic Field Sensor (지자계 및 가속도 센서를 이용한 활동추적 시스템 개발)

  • Jung, Hwan;Kang, Hag-Seong;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.144-147
    • /
    • 2010
  • 본 연구에서는 실내의 활동추적 시스템을 위해 가속도센서와 지자계 센서를 이용하여 외부로부터 독립적인 소형의 관성항법장치를 제안하였다. 기존의 실내 위치추적은 주로 GNSS(global navigation satellite system)의 정보를 가져와 실내 환경에 맞게 초음파와 RSSI(received signal strength indicator)등을 이용하여 구성한 경우가 연구되었으나 이러한 위성항법은 좌표 값이 미리 저장된 고정 노드가 필수적이라는 단점이 있다. 따라서 본 연구에서는 실내 환경과 같이 이동거리가 길지 않으며, 기존 환경 및 외부로부터의 영향에서 자유로운 관성항법을 이용한 실내 활동추적시스템을 제안하였다. 이를 위해 지자계 센서와 3축 가속도 센서를 사용한 신호 계측부와 Zigbee기반의 무선 센서 네트워크를 이용한 무선 전송부를 구성하였으며, 계측된 데이터의 분석으로부터 실내 위치추적의 가능성을 평가하였다.

  • PDF

Advanced Railway Vehicle Technology using Smart Materials (지능재료를 이용한 차세대 철도차량기술)

  • 김재환;강부병;김형진;정홍채;최성규
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.712-717
    • /
    • 2003
  • 지능 재료를 이용한 디바이스는 자연계에 존재하는 생명체와 같이 내.외부 환경 변화에 대응하여 스스로 변하는 능동적 기능을 갖고 있기 때문에 시스템 성능의 극대화 및 유지비용의 최소화를 가져오게 된다. 이러한 지능재료 기술은 지난 10여년 전부터 연구되었는데 대표적인 웅용을 보면, 산업, 항공, 교통, 운송 분야의 능동 소음 및 반능동 진동제어; 복합 재료 손상위치 탐지시스템, 손상구조 건전성 평가시스템, 교량, 저장탱크, 건물, 유조선, 대형 구조물의 건전성 평가 시스템; 초정밀 직진 안내기구, 나노 스테이지, 절삭오차 보정용 엑츄에이터, 초음파 회전모터, 지능유압 서보밸브, 변형 거울 등의 모터/엑츄에이터; 자동차 엔진 성능제어, 흡배기구 압력측정, 가속도 센서, 자이로센서, 에어백 센서, 타이어 센서 등의 지능 MEMS/NEMS 센서; electronic article 정찰, 도서태그, 비접촉 항공 운송물 분류 및 보안시스템, 전자 운전자 식별시스템, 광섬유 건물 보안 시스템, 지능 신경망 형상 인식 시스템 등의 보안 시스템; 지능항공기 구조물, 인공위성안테나, 헬리콥터 회전익 등의 형상제어가 있다. 본 논문에서는 지능재료 기술을 정리하고 차세대 철도차량 기술에 지금까지 적용한 예를 소개하며 향후 적용할 수 있는 분야들을 가능성 및 실용성 면에서 소개하고자 한다.

  • PDF

An Optimization Approach for Localization of an Indoor Mobile Robot (최적화 기법을 사용한 실내 이동 로봇의 위치 인식)

  • Han, Jun Hee;Ko, Nak Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.253-258
    • /
    • 2016
  • This paper proposes a method that utilizes optimization approach for localization of an indoor mobile robot. Bayesian filters which have been widely used for localization of a mobile robot use many control parameters to take the uncertainties in measurement and environment into account. The estimation performance depends on the selection of these parameter values. Also, the performance of the Bayesian filters deteriorate as the non-linearity of the motion and measurement increases. On the other hand, the optimization approach uses fewer control parameters and is less influenced by the non-linearity than the Bayesian methods. This paper compares the localization performance of the proposed method with the performance of the extended Kalman filter to verify the feasibility of the proposed method. Measurements of ranges from beacons of ultrasonic satellite to the robot are used for localization. Mahalanobis distance is used for detection and rejection of outlier in the measurements. The optimization method sets performance index as a function of the measured range values, and finds the optimized estimation of the location through iteration. The method can improve the localization performance and reduce the computation time in corporation with Bayesian filter which provides proper initial location for the iteration.