• Title/Summary/Keyword: 초음파 물성평가

Search Result 76, Processing Time 0.026 seconds

Manufacture and Mechanical Properties of Carbon Nanofiber Reinforced Hybrid Composites (탄소나노섬유가 강화된 하이브리드 복합재료의 제조 및 기계적 특성)

  • Chung Sang-Su;Park Ji-Sang;Kim Tae-Wook;Kong Jin-Woo
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2005
  • Carbon nanofiber exhibits superior and of ien unique characteristics of mechanical, electrical, chemical and thermal properties. Despite of the excellent properties of carbon nanofiber, the properties of carbon nanofiber filled polymer composites were not increased largely. The reason is that it is still difficult to ensure the uniform dispersion of carbon nanofiber in a polymer matrix. In this study, for improvement of the mechanical properties of composites, carbon nanofiber reinforced hybrid composites was investigated. For the dispersion of carbon nanofiber. solution blending method using ultrasonic was used. Dispersion of carbon nanoifiber was observed by scanning electron microscope (SEH). Mechanical properties were measured by universal testing machine(UTM).

Petrographic Characteristics and Deterioration Evaluation of the Rock-carved Seated Buddha at Bugmireugam Hermitage in Daeheungsa Temple of Haenam, Korea (해남 대흥사 북미륵암 마애여래좌상의 암석기재적 특성과 손상도 평가)

  • Cho, Ji Hyun;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.617-626
    • /
    • 2019
  • In this study, we investigated the petrographic characteristics and physical property of the Rock-carved Seated Buddha at Bugmireugam hermitage of Daeheungsa temple in Haenam. The Buddha Statue was carved on micrographic granite, and the rock was composed of the fine quartz encircled by orthoclase. The results of diagnosis for deterioration evaluation have shown a highly damage rate of black contaminants (8.4%) and crack index (6.6). The ultrasonic velocity have detected SW (slightly weathered) grade of weathering coefficient (mean 0.18). Various weathering factor on the surface of the Buddha Statue was affected by precious shelter, and physical property with ultrasonic was directly influenced by the structural characteristics and fissure of host rock.

Development of a Method for Characterizing Single-Fiber Composite Interphase from Frequency-Domain Characteristics of Ultrasonic Scattered Waves (산란 초음파의 주파수 특성을 이용한 단일 섬유 복합재료의 인터페이즈 평가법 개발)

  • Kim, Woong-Ki;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.100-109
    • /
    • 1999
  • A method is proposed to characterize single-fiber composite interphases from the frequency-domain characteristics of scattered ultrasonic waves, and its feasibility is investigated theoretically. It has been shown that the locations and magnitudes of the peaks and valleys in the frequency domain are affected significantly by the interphase properties, which may indicate the effectiveness of the proposed method. Although the frequency-domain behavior is basically associated with the resonance of the fiber-interphase system, it is not dominantly affected by the scatterer's resonance unlike that in the case of acoustic wave scattering. Therefore, the conventional acoustic resonant scattering theory is not directly applicable to the characterization of composite interphases. In order to solve the inverse problem of predicting the interphase properties from the frequency-domain characteristics of the ultrasonic scattered waves, an artificial neural network has been constructed. This approach has demonstrated reasonable accuracy in most cases considered in this study.

  • PDF

Degradation Assessment of Aluminum Alloy 6061-T6 Using Ultrasonic Attenuation Measurements (초음파 감쇠 측정을 이용한 Al6061-T6 열화 평가)

  • Kim, Hun-Hee;Kang, To;Seo, Mu-Kyung;Song, Sung-Jin;Kim, Hak-Joon;Kim, Kyung-Cho;Kim, Young-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.20-25
    • /
    • 2013
  • Ultrasonic methods are widely used to degradation assessment. Remaining-life cycle of metal can be estimated by ultrasonic parameters because ultrasonic velocity and attenuation are affected by change of material properties with accumulated fatigue in the metal. Therefore, in this study, we will estimate overall change of material properties by 2D C-scan image. Fatigued aluminum alloy 6061-T6 samples from 0 to 85% were prepared for evaluating fatigue life cycle. Also, degraded image of materials using attenuation is proposed to estimate degree of material degradation for determining degraded area of fatigued samples. Finally, we will predicts process pf degradation with measured attenuation of fatigued aluminum alloy 6061-T6 samples.

Weathering Characteristics and Condition Assessment Conservation Treatment for Bayon Style Avalokitesvara, Cambodia (캄보디아 바이욘 양식 관음보살상의 풍화특성과 보존처리 상태평가)

  • Choie, Myoungju;Lee, Myeong Seong;Yoo, Ji Hyun;Chun, Yu Gun;Kim, Sothin;In, Sovann;Oum, Sineth
    • Journal of Conservation Science
    • /
    • v.34 no.3
    • /
    • pp.167-177
    • /
    • 2018
  • The Bayon style Avalokitesvara statue from the $13^{th}$ century Angkor period is on display at the Cambodia Angkor Conservation Office. This statue is composed of dark green felthspathic greywacke, the surface of which has been shown light brown discoloration, detected calcite crystallization. As a result of condition assessment, the statue was damaged due to overlap scaling and cracking. Ultrasonic tests have investigated remarkable physical weathering area, flaking and fragmentation in lower velocity. The physical condition of the statue requires a conservation method that improves the binding power. To protect against salt weathering and to ensure physical stability, new conservation material composed of mixed ethyl silicate and sandstone powder similar to that composing the statue was created. The material affected by damage was removed and replaced with the new conservation material.

Material Characteristics, Deterioration Evaluation and Crack Depth Estimation for Mulgyeseowon Stele in Changnyeong, Korea (창녕 물계서원 원정비의 재질특성 및 손상도 평가와 균열심도 측정)

  • Yoo, Ji Hyun;Lee, Chan Hee;Chun, Yu Gun
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.427-438
    • /
    • 2014
  • To measure the depth and extension on the surface cracks of the stone monument, ultrasonic pulse velocity targeted at the Mulgyeseowon Stele in Changnyeong was used in this research. Additionally, to establish a long-term countermeasure of management and conservation for this stele, we have investigated the material properties and damage on it and have conducted a precise diagnosis by a variety of non-destructive techniques. Our research has revealed that stones of the stele are composed mainly of three rock types according to the parts of it, alkali-feldspar granite, gabbro and diorite. The result of the deterioration evaluation has occurred that cracks, which are observed from every direction in the body of the stele, are the significant factors to reduce structural stability. The ultrasonic velocity for an evaluation on the properties of the stele has revealed that the speed was high in the order of body, pedestal and crown. Furthermore, to understand the present condition and occurrences of the cracks which have measured in many different forms on the stele quantitatively, we have estimated from 0.6 to 24.1cm deep of the cracks by To-Tc method using ultrasonic velocity.

Material Characterization of Lock Plate Using Guided Wave (유도 초음파를 이용한 락 플레이트 물성 평가)

  • Lee, Jae-Sun;Cho, Youn-Ho;Jeong, Kyoung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.373-379
    • /
    • 2009
  • Presented in this paper is a new experimental technique to measure material properties of lock plate of gas turbine plants by using ultrasonic guided wave. In comparison with the mechanical destructive testings, material characterization of the Inconel x-750 was nondestructively carried out in a more efficient manner to discriminate the change in elastic moduli and the poisson's ratio attributed to the variation of heat treatment condition. The proposed technique shows a satisfactory feasibility via the comparative experiments with the imported lock plate specimens. It is also expected that the guided wave technique can cover a longer and wider range as a new cost-&-time-saving inspection tool due to the interaction with a greater part of specimen, compared to a conventional local point-by-point scheme.

Selection of Alternative Cleaning Agents for Ultrasonic Cleaning Process in Remanufacturing of Used Laser Copy Machine (중고 레이저 복합기의 재제조 공정에서 초음파세정을 위한 대체 세정제의 선정)

  • Park, Yong-Bae;Bae, Jae-Heum;Chang, Yoon-Sang
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.117-123
    • /
    • 2011
  • In this study, evaluation tests for cleaning performance of various cleaning agents and selection of optimal ultrasonic cleaning parameters were executed to develop an efficient cleaning process in remanufacturing of laser copy machine. Cleaning performance tests were executed with 8 cleaning agents (A~H) to remove the contaminants of oil-ink, toner particles, and shoe polish. Physical properties and foamability tests were also applied. For 3 types of contaminants, cleaning agent G showed superior cleaning performance compared to agent A which has being used at a remanufacturing of laser copy machine in Korea. With cleaning agents selected in pre-tests, ultrasonic cleaning tests were executed to remove real contaminants on the parts of used digital laser copy machine parts. Cleaning agent G at 28 kHz ultrasonic frequency showed faster cleaning performance compared to agent A and other frequencies. The productivity and economic efficiency in remanufacturing of laser copy machine are expected to increase by adapting agent G and 28 kHz frequency at ultrasonic cleaning process.

A New Mixing Method of SiC Nanoparticle Reinforced Epoxy Composites with Large Concentration of SiC Nanoparticle (대용량 SiC 나노입자 강화 에폭시 복합재료의 새로운 분산방법)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.223-229
    • /
    • 2016
  • SiC nanoparticles were used to increase flexural properties of polymer matrix. This study was to manufacture huge concentration SiC nanoparticle/epoxy composites and to evaluate the dispersion. During mixing SiC nanoparticle and epoxy, 20 wt% SiC nanoparticle in total composites was used with both stirrer and sonication equipment together. Mixing speed and dispersion were improved with the method by using both stirrer and sonication equipment at the same time via mechanical test and FE-SEM. Based on the results, modeling of SiC nanoparticle dispersion could be established. Ultimately, unidirectional carbon fiber reinforced composites was manufactured using 20 wt% SiC nanoparticle/epoxy. Mechanical property of CFRP using dual stirrer and sonication mixing method was better than composites by single sonication mixing method.

Design of Matching Layers for high Efficiency-wide band Ultrasonic Transducers (고출력 광대역 초음파 탐촉자를 위한 정합층 설계)

  • Kim, Yeon-Bo;Roh, Yong-Ae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.82-89
    • /
    • 1996
  • Application fields of ultrasonic transducers can be divided into two categories, a high ultrasonic resolution required field and a high ultrasonic power required field. This paper is aimed to determine the optimal properties of the matching layers of the transducer for each of the applications. Further, it is aimed to optimize the properties of the matching layers that show satisfactory performances for both of the application fields. Through the direct time domain analysis of the transmission and reflection behavior of the ultrasonic wave, apart from the conventional equivalent circuit analysis, and Fourier transformation of its results, we found the optimum acoustic impedances of the matching layers. The newly determined layers provide much better transducer performance-57% at most-than those obtained with conventional design methods. Based on the results, we also found the optimal acoustic impedances of the layers good for both of the application fields. For te optimization, we developed a new transducer performance evaluation parameter that can be applied to any type of ultrasonic transducers.

  • PDF