• Title/Summary/Keyword: 초음속터빈

Search Result 84, Processing Time 0.018 seconds

A Study on the Organic Rankine Cycle for the Fluctuating Heat Source (가변 열원에서 작동하기 위한 유기랭킨 사이클에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.12-21
    • /
    • 2014
  • An organic Rankine cycle was analyzed to work at the optimal operating point when the heat source is fluctuated. R245fa was adopted as a working fluid, and an axial-type turbine as expander on the cycle was designed to convert the heat energy to the electricity since the turbo-type expander works at off-design points better than the positive displacement-type expander. A supersonic nozzle was designed to increase the spouting velocity because a higher spouting velocity can produce more output power. They were designed by the method of characteristics for the operating fluid of R245fa. Three different cases, such as various spouting velocities, various inlet total temperatures, and various nozzle numbers, were studied. From these results, an optimal operating cycle can be designed with the organic Rankine cycle when the available heat source as renewable energy is low-grade temperature and fluctuated.

Performance Test of a Small Simulated High-Altitude Test Facility for a Gas-turbine Combustor (가스터빈 저온/저압 점화장치 구성 및 운영조건 확인 시험)

  • Kim, Tae-Woan;Lee, Yang-Suk;Ko, Young-Sung;Lim, Byeung-Jun;Kim, Hyeong-Mo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.153-156
    • /
    • 2008
  • Ignition and combustion performance of a gas-turbine engine were changed by various high-altitude condition. A goal of this study is to make the small test facility to simulate high-altitude condition. To perform the low pressure condition, a diffuser was used in various diffuser front of primary nozzle pressure. To perform the low temperature, heat exchanger was used in various mixture ratio of cryogenic air and ambient temperature air. The experimental result shows that high-altitude conditions can be controled by diffuser front of primary nozzle pressure and mixture ratio of cryogenic air and ambient temperature air.

  • PDF

A study on the burn-in test to accomplish high quality cockpit air of an ultra-sonic aircraft in the early stage of production (생산 초기 초음속 항공기 조종석의 고품질 공기 확보를 위한 burn-in test 연구)

  • Shin, Jae Hyuk;Park, Sung Jae;Seo, Dong Yeon;Jeong, Suheon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.871-876
    • /
    • 2016
  • Abnormal odor similar with burning smell often appears at the cockpit in the beginning of ultra-sonic aircraft without air filter due to the heating of production materials remained at the bleed air duct. Sources of the odor should be removed by burn-in test before test flight in order to prevent pilot confuses order with emergency such as fire of engine. However, the present method cannot prevent abnormal odor completely at the high altitude flight because maximum temperature of flight is higher than it of burn-in-test. This paper suggests burn-in test improved based on the analysis of thermal conditions of high altitude flight. It is verified that the existing burn-in test cannot cover thermal conditions of high altitude flight due to the discontinuous flow control, high change rate of temperature per unit time and difference between limit temperature of condenser and turbine. In order to overcome the limitations of current methods, the new burn-in test with continuous flow control are suggested. The continuous flow control are achieved by ram air inlet control. The effect of suggested method are verified by ground tests and flight tests. The results show the bleed air temperature can cover the temperature of high altitude flight and prevent abnormal odor at the flight test.

Pressure Recovery in a Supersonic Ejector of a High Altitude Turbofan Engine Testing Chamber (터보팬 엔진의 고고도 성능의 초음속 이젝터의 압력회복에 관한 연구)

  • Omollo, Owino George;Kong, Chang-Duk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.53-59
    • /
    • 2010
  • This research aims in finding a more optimal ejector size for evacuating engine exhaust gasses and 20% of the cell cooling air. The remaining 80% of cell cooling air pumped into the test chamber is separately exhausted from the test chamber via a discharge port fitted with flow control valves and vacuum pump. Unlike its predecessor this configuration utilizes a smaller capture area to improve pressure recovery. The modified ejector size has a diameter of 1100mm enough to evacuate 66kg/s jet engine exhaust in addition to about 20%, 24kg/s of the cell cooling air tapped from the sterling chamber. This configurations has an area ratio of the engine exit and ejector inlet of about 1.2. Simulation results of the proposed ejector configuration, indicates improved pressure recovery.