• Title/Summary/Keyword: 초속경시멘트

Search Result 80, Processing Time 0.025 seconds

Durability of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지 혼입 초속경 폴리머 시멘트 모르타르의 내구성)

  • 이윤수;주명기;연규석;정인수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.660-667
    • /
    • 2002
  • The effects of polymer-cement ratio and antifoamer content on the durability of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder are examined. As a result, regardless of the antifoamer content, the setting time of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to delay with increasing polymer-cement ratio. The water absorption and chloride ion penetration depth of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The resistance of freezing and thawing and chemicals improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder

Restrained Shrinkage Properties of Polypropylene Fiber Reinforced Rapid-Setting Cement Concrete (합성섬유보강 초속경 콘크리트의 구속건조수축 특성)

  • 원치문
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • The rapid-set cement concrete causes high hydration temperature and nay result in a high drying shrinkage and shrinkage-induced cracking. This problem may be fixed by incorporating polypropylene fibers in rapid-set cement concrete, because of increased toughness, resistance to impact, corrosion, fatigue, and durability. A series of concrete drving shrinkage tests was peformed in order to investigate the shrinkage properties of polypropylene fiber reinforced concrete with experimental variables such as concrete types, fiber reinforcement, W/C ratio, with and without restraint. Uni-axially restrained bar specimens were used for the restrained shrinkage tests. The results were as follows; The dry shrinkage of rapid-set cement concrete was much lessor than that oi OPC, probably because of smaller weight reduction rate by early hydration and strength development. The constraint and bridging effects caused by polypropylene fibers were great for the rapid-setting cement concrete when compared with that of plain concrete, and this resulted In increased resistance against tensile stress and cracking.

Engineering Character of Ultra Rapid Hardening Concrete-Polymer Composite using CAC and Gypsum Mixed CAC (CAC 및 석고혼입 CAC를 사용한 초속경 콘크리트-폴리머 복합체의 공학적 특성)

  • Koo, Ja Sul;Yoo, Seung Yeup;Kim, Jin Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.97-105
    • /
    • 2016
  • Recently, application case of the ultra rapid hardening concrete-polymer composite(URHCPC) are increasing to repair for the deterioration of pavement. But it is a major disadvantage that the main material is expensive and has environmental load. For these reasons, the development of the economic, eco-friendly materials is needed. Calcium Aluminate Composite (CAC), produced by rapid cooling of atomizing method with molten ladle furnace slag, is a material capable of improving the economic feasibility and reducing the environmental load of URHCPC. In this paper, the properties of CAC and gypsum mixed CAC (GC) as alternative materials of RSC according to the types of polymer dispersion were studied. The results were as follows; compressive strength, tensile strength, flexural strength, bonding strength and modulus of elasticity of the composites using CAC or GC showed higher values than those of plain proportion in 3 hour. In later age, they were at the same level as the general proportions. URHCPC using BPD as polymer dispersion had superior strength properties generally. But modulus of elasticity was the same level as the case of using a SBR latex. According to these results, CAC or GC can partially substituted for RSC to product the URHCPC. When URHCPC uses the BPD as the polymer dispersion, it can be improved performance.

Durability of Ultrarapid-Hardening Polymer-Modified Concretes Using Metakaolin (메타카올린을 혼입한 초속경 폴리머 시멘트 콘크리트의 내구특성)

  • Yoo, Tae-Ho;Chang, Byung-Ha;Hong, Hyun-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.31-38
    • /
    • 2018
  • The effects of polymer-binder ratio and metakaolin content on the properties of ultrarapid-hardening polymer-modified concretes using metakaolin are examined. As a result, regardless of the metakaolin content, the flexural, compressive and adhesion in tension strength of the ultrarapid-hardening polymer-modified concretes tend to increase with increasing polymer-binder ratio. Regardless of the polymer-binder ratio, the strengths of the ultrarapid-hardening polymer-modified concretes increase with increasing metakaolin content, and reaches a maximum at metakaolin content of 5%. The water absorption, carbonation depth and resistance of chloride ion penetration of the ultrarapid-hardening polymer-modified concretes decrease with increasing polymer-binder ratio. The resistance of freezing and thawing improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of polymer dispersion.

Mechanical Properties of High-Early-Strength Concrete for Early Traffic Opening (조기교통개방 콘크리트의 강도특성)

  • Won, Jong-Pil;Kim, Hyun-Ho;Ahn, Tae-Song
    • International Journal of Highway Engineering
    • /
    • v.3 no.2 s.8
    • /
    • pp.123-130
    • /
    • 2001
  • This study was performed to enhance mechanical properties of high-early-strength concrete using regulated-set cement for early traffic opening with various mixtures. Restraint of moisture and thermal movements of concrete pavement in actual field conditions, by external or internal restraining factors, generates tensile stresses which introduce microcracks and thus reduce the mechanical properties of concrete. Fiber reinforcement of concrete is an effective approch to the control of microcrack and crack development under tensile stresses. Three different types of regulated-set cement which recently have been used in Korea and two different types of fiber were adopted. Fibers were added and their mixtures are compared with plain high-early-strength concrete mixture. From the test results, fiber reinforced concrete was increased mechanical properties of high-early-strength concrete using regulated-set cement than the plain concrete.

  • PDF

Material Property Evaluation for UFFA Rapid Setting Concrete including Calcium Hydroxide (수산화칼슘을 첨가한 UFFA 초속경 콘크리트의 물성특성 평가)

  • Jeon, Sung-Il;Nam, Jeong-Hee;An, Ji-Hwan;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.189-198
    • /
    • 2008
  • Generally, UFF A(Ultra Fine Fly Ash) has merit that advances a greater concrete workability and activates a greater pozzolanic reaction than common fly ash due to its ultra fine particle size. These properties enhance concrete durability by reducing permeability and increasing resistance of alkali silica reaction(ASR) and sulfate attack, etc. Due to these reasons, UFFA can be used in a rapid setting concrete. The purpose of this study is to develop and evaluate the rapid setting concrete with UFF A as a repair material for early-opening-to-traffic. In previous studies, if only UFFA is added to the rapid setting concrete mixture, pozzolanic reaction doesn't happen actively. Therefore, in this study, the chemical and physical tests were performed for rapid setting concrete with UFFA including calcium hydroxide and the activity of pozzolanic reaction was evaluated. Finally, the effectiveness of this mixture on enhancing concrete durability was investigated. As results, adding UFF A decreased the water/cement ratio of concrete, and compensated the reduced portion of the early strength of concrete. Also, rapid setting concrete with UFFA including calcium hydroxide activated a greater pozzolanic reaction than normal-UFF A concrete. As calcium hydroxide increases, electrical indication of concrete's ability to resist chloride ion penetration is promoted significantly.

  • PDF

Heat Performance of Rapid Hardening Nano-Cementitious Composite for Repairing of Concrete Structures (콘크리트 구조물 보수를 위한 초속경 나노-시멘트 복합체의 발열성능)

  • Cho, Sanghyeon;Lee, Heeyoung;Yu, Wonjun;Kim, Donghwi;Chung, Wonseok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.421-428
    • /
    • 2020
  • Recently, excellent thermal and electrical performance of cementitious composites by mixing nano materials are being studied. The purpose of this study is to research the heat generation and power consumption of rapid hardening nano-cementitious composites. The experiment was carried out after setting the rapid hardening cementitious material, curing day, and supply voltage as parameters. Rapid hardening nano-cementitious materials were classified into cement paste, mortar, and concrete The heat performance of all rapid hardening nano-cementitious composites in curing 1 day has increased over 10℃. The rapid hardening nano-cementitious composites can exhibit heat performance within 1 day. The heat performance of the rapid hardening nano-cementitious composites is maintained after 28 days.

Drying Shrinkage and Strength Properties of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지를 혼입한 초속경 폴리머시멘트 모르타르의 건조수축 및 강도특성)

  • Lee, Youn-Su;Joo, Myung-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.409-416
    • /
    • 2003
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the air content, setting time, drying shrinkage and strength of polymer-modified mortars using redispersible polymer powder are examined. As a result, the air content of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and antifoamer content. Regardless of the antifoamer content, the setting time of the polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio. Irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. Regardless of the antifoamer content, the flexural and tensile strengths of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.