• 제목/요약/키워드: 초소형 열병합발전

검색결과 5건 처리시간 0.026초

세계최고수준의 제품으로 국내아파트 열병합발전에 새바람

  • 에너지절약전문기업협회
    • ESCO지
    • /
    • 통권29호
    • /
    • pp.16-19
    • /
    • 2004
  • 삼성테크윈㈜(대표 이중구)은 최근 멀티미디어시대의 총아로 각광받고 있는 디지털카메라, 첨단 항공기엔진, 반도체부품 및 제조장비, 그리고 가스터빈 등으로 잘 알려진 기업이다. 특히 국내 가스터빈 산업의 선도적인 역할을 자부하는 이 회사는 1,200kW급 소형가스터빈과 100kW급 초소형가스터빈을 개발, 열병합발전과 비상용발전 등 분산발전시스템 사업을 활발히 전개해오다 지난해 3월부터 ESCO사업을 시작했다. 최고의 제품과 서비스창출을 경영방침으로 아파트열병합발전 분야에서 단기간에 두각을 나타내고 있는 삼성테크윈의 ESCO사업 이야기를 들어본다.

  • PDF

초소형 열병합발전시스템(${\mu}CHP$) 운전거동 시뮬레이션 프로그램 개발 (Heat Transfer in a Duct with Various Cross Section of Ribs)

  • 조우진;이관수;김인규
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.172-176
    • /
    • 2009
  • We developed a program, "CogenSim-$\mu$," to simulate the operation of micro-combined heat and power (${\mu}CHP$) system. The CogenSim-$\mu$ can reflect the variation of energy efficiency by handling the real-time loads (heat and power) fluctuation. The result obtained using this program was compared with the real operation of 30 kWe gas engine driven ${\mu}CHP$. It was found that the CogenSim-$\mu$ could predict the amount of generated-power, recovered-heat and consumed-fuel with the error less than 3%, and heat and power efficiency with the error less than 4%. The CogenSim-$\mu$ reconstructed the profile of on-off cycle, which represented the operation of a facility, with more than 93% accuracy. The CogenSim-$\mu$ can reflect the effects of various factors such as size of thermal storage tank, desired temperature of reservoir water, natural frequency of generator, etc. As a result, the CogenSim-$\mu$ can be used to optimize the ${\mu}CHP$ operation.

  • PDF

주택면적의 변화에 따른 가정용 초소형 연료전지 코제너레이션 시스템의 경제성 분석에 관한 연구 (A Study on the Economic Evaluation with Super-Micro Fuel Cell Home Cogeneration System by Varying the Floor Area of House)

  • 노철우;김민수
    • 신재생에너지
    • /
    • 제4권2호
    • /
    • pp.45-51
    • /
    • 2008
  • The fuel cell system is environment-friendly and energy efficient system. Especially, the fuel cell cogeneration systems providing heat and electricity to buildings have been developed and applied to a lot of sites in the world to cope with the global warming and $CO_2$ emission problem. This paper presents the result of study on the economic evaluation with super-micro fuel cell (SMFC) cogeneration system by varying the floor area ($132m^2{\sim}331m^2$) of the house, whose system capacity ranges from 0.10 kWe to 0.50 kWe. The electricity demand, heat demand, saved energy cost, and the simple pay-back period have been simulated for the various capacities of fuel cell cogeneration system. As a result, this study suggests the fuel cell system’s capacity decision strategy for a given house area. Contrary to conventional design assumptions, the smaller capacity fuel cell cogeneration system is appropriate for the house of large floor area to defense the progressive electricity tax, and the larger capacity fuel cell cogeneration system is appropriate for the house of small floor area to sell the electricity.

  • PDF

주택면적의 변화에 따른 가정용 초소형 연료전지 코제너레이션 시스템의 경제성 분석에 관한 연구 (A Study on the Economic Evaluation with Super-Micro Fuel Cell Home Cogeneration System by Varying the Floor Area of House)

  • 노철우;김민수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.25-28
    • /
    • 2008
  • The fuel cell system is environment-friendly and energy efficient system. Especially, the fuel cell cogeneration systems providing heat and electricity to buildings have been developed and applied to a lot of sites in the world to cope with the global warming and $CO_2$ emission problem. This paper presents the result of study on the economic evaluation with super-micro fuel cell (SMFC) cogeneration system by varying the floor area ($132m^2{\sim}331m^2$) of the house, whose system capacity ranges from 0.10 kWe to 0.50 kWe. The electricity demand, heat demand, saved energy cost, and the simple pay-back period have been simulated for the various capacities of fuel cell cogeneration system. As a result, this study suggests the fuel cell system's capacity decision strategy for a given house area. Contrary to conventional design assumptions, the smaller capacity fuel cell cogeneration system is appropriate for the house of large floor area to defense the progressive electricity tax, and the larger capacity fuel cell cogeneration system is appropriate for the house of small floor area to sell the electricity.

  • PDF

유기랭킨사이클 적용 스크롤 팽창기 성능 특성 연구 (Operating Characteristics of a Scroll Expander Used in Organic Rankine Cycle)

  • 신동길;김영민;김창기
    • 설비공학논문집
    • /
    • 제23권12호
    • /
    • pp.776-781
    • /
    • 2011
  • The rapid increases in global energy demand and global warming need renewable energy sources such as solar thermal energy, biomass energy and waste heat. A ORC-based micro-CHP system(< 10 kWe) is one of the effective means to use renewable energy and solve energy problems because of its compactness, flexibilities and lower cost compared to other systems. The most important core components of the ORC is the expander which has a strong effect on the cycle efficiency. In the range of power output from 1 to 10 kW, the scroll expander is a good choice due to its performance and reliability. In this study, we have carried out an experimental study on an ORC equipped with oil-free scroll expander working with refrigerant R134a. We have measured power output and thermal efficiencies of the ORC and analyzed correlation between volumetric efficiencies of the expander and thermal efficiencies of the ORC.