• Title/Summary/Keyword: 초소형 금형

Search Result 16, Processing Time 0.025 seconds

Structural Analysis of High-Density Mobile Micro-Connector (초소형 고집적 모바일 커넥터부품 구조해석)

  • Jeon, Yong-Jun;Shin, Kwang-Ho;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.1-5
    • /
    • 2015
  • Recently, as small-sized display products such as mobile phones and digital cameras have become lighter and smaller, the size of electric signal delivery part, connector for the mobile display products, also, needs to become smaller, so high-density integration like shortening the distance between signal delivery media, conductors is necessary. With the micro and high-density integration of the connector, it is necessary to maintain contact to a certain degree for keeping intensity and delivering electric signal smoothly to prevent a defect with a specific impact. Accordingly, this study carried out a structural analysis according to the operating mechanisms of 0.16CHP Class Bottom Contact FPC Connector and 0.24CHP Class BTB Connector mostly used in small-sized mobile display products such as mobile phones and digital cameras. As a result of the analysis, both connectors had lower than 997MPa, yield strength of connector material C5240-XSH, so it is judged that permanent plastic deformation would not occur, and that a contact force between the connector and FPC film occurs to a certain degree, so that there would not be any defect in electric signal delivery.

  • PDF

Mechanical Characteristic Evaluation of Proper Material for Ultra-fine Dies (초소형 금형소재의 기계적 특성평가)

  • KANG Jae-hoon;LEE Hyun-yong;LEE Nak-kyu
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.473-476
    • /
    • 2005
  • Today's manufacturing industry is facing challenges from advanced difficult-to-machine materials (WC-Co alloys, ceramics, and composites), stringent design requirements (high precision, complex shapes, and high surface quality), and machining costs. Advanced materials play an increasingly important role in modem manufacturing industries, especially, in aircraft, automobile, tool, die and mold making industries. The greatly-improved thermal, chemical, and mechanical properties of the material (such as improved strength, heat resistance, wear resistance, and corrosion resistance), while having yielded enormous economic benefits to manufacturing industries through improved product performance and product design, are making traditional machining processes unable to machine them or unable to machine them economically. In this paper, mechanical characteristic evaluation test of fine powder type WC-Co alloy was accomplished to obtain clear data for miniaturized special die parts machining with high reliability and high quality.

  • PDF

Powder extrusion with superplastic Al-78Zn powders for micro spur gears (초소형 스퍼기어 제조를 위한 초소성 Al-78Zn 분말 압출)

  • Lee, K.H.;Kim, J.W.;Hwang, D.W.;Kim, J.H.;Chang, S.S.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.387-390
    • /
    • 2009
  • This study was designed to fabricate the micro-electro-mechanical systems (MEMS) parts such as micro spur gears using hot extrusion of gas atomized Al-78Zn powders. For this purpose, it is important to develop new methods to fabricate micro-dies and choose suitable extrusion conditions for a micro-forming. Micro-dies with Ni were fabricated by LIGA technology. LIGA technology was capable to produce micro-extrusion dies with close tolerances, thick bearing length and adequate surface quality. Superplastic Al-78Zn powders have the great advantage in achieving deformation under low stresses and exhibiting good micro formability with average strain rates ranging from $10^{-3}$ to $10^{-2}\;s^{-1}$ and constant temperatures ranging from 503 to 563K. Al-78Zn powders were compacted into a cylindrical shape (${\Phi}3{\times}h10$) under compressive force of 10kN and, subsequently, the compacted powders were extruded at 563k in a hot furnace. Micro-extrusion has succeeded in forming micro-gear shafts.

  • PDF

Precision Surface Profiling of Lens Molds using a Non-contact Displacement Sensor (비접촉 변위센서를 이용한 초소형렌즈 정밀금형 형상측정)

  • Kang, Seung-Hoon;Jang, Dae-Yoon;Lee, Joohyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.69-74
    • /
    • 2020
  • In this study, we proposed a method for surface profiling aspheric lens molds using a precision displacement sensor with a spatial scanning mechanism. The precision displacement sensor is based on the confocal principle using a broadband light source, providing a 10 nm resolution over a 0.3 mm measurable range. The precision of the sensor, depending on surface slope, was evaluated via Allan deviation analysis. We then developed an automatic surface profiling system by measuring the cross-sectional profile of a lens mold. The precision of the sensor at the flat surface was 10 nm at 10 ms averaging time, while 200 ms averaging time was needed for identical precision at the steepest slope at 25 deg. When we compared the measurement result of the lens mold to a commercial surface profiler, we found that the accuracy of the developed system was less than 90 nm (in terms of 3 sigmas of error) between the two results.

Fabrication of a Micro Die by LIGA Process and Hybrid Powder Extrusion Process of Micro-spur Gear (LIGA 공정을 이용한 초소형 스퍼기어 금형 제작 및 하이브리드 분말 압출성형)

  • Lee, K.H.;Hwang, D.W.;Kim, J.H.;Jang, S.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.352-356
    • /
    • 2010
  • This paper was designed to fabricate the micro-spur gear by the LIGA and hybrid powder extrusion process. It is important to manufacture a micro-die with a high aspect ratio and determine appropriate extrusion conditions for a microforming. Ni has been used to fabricate micro-dies. LIGA process was capable to produce micro-extrusion dies with close tolerance, longer bearing length and adequate surface quality. Superplastic Al-78Zn powders have the great advantage in achieving deformation under low stresses and exhibiting good micro-formability with average strain rate raging from $10^{-3}$ to $10^{-2} s^{-1}$ and constant temperature ranging from 503 to 563K. Al-78Zn powders were compacted into a cylindrical shape ($\Phi3\times$h10mm) under compressive force of 10kN and, subsequently, the compacted powders were extruded by the hybrid powder extrusion process controlling of the temperature holing time for a improvement on formability of Al-22Zn powder. Micro-extrusion has succeeded in forming micro-gear shafts.

Characterization of Superplasticity Using Cone-Type Bulge Test (원뿔형 금형을 이용한 초소성 변형 특성 평가)

  • Kwon Y.-N.;Lee S. J.;Lee Y. S.;Lee H. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.180-183
    • /
    • 2004
  • Superplastic formability depends on flow parameters such as temperature, strain rate, strain and stress, microstructures. Usually, superplastic properties of materials are characterized with using a uni-axial tension testing. However, superplastic sheet is formed under mutiaxial loading condition in most forming practices. In the present study, superplastic characteristics of A15083 alloys were determined with using both a uni-axial and biaxial bulging tests. Specially, cone-type die was used to achieve constant strain rate under constant pressure condition. Even though constant strain rate under a certain pressure was achieved only approximately, a cone-type bulging test was found to be quite beneficial to get a multiaxial formability of superplastic materials.

  • PDF