• 제목/요약/키워드: 초소성합금

검색결과 4건 처리시간 0.021초

Al계 초소성합금과 Zr계 비정질합금의 마이크로 진동성형에 관한 연구 (A Study on the Micro Vibration Forming of Al-based Superplastic Alloy and Zr-based Bulk Metallic Glass)

  • 손선천;박규열;나영상
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.193-200
    • /
    • 2007
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). Al5083 superplastic alloy with very small grains has a great advantage in achieving micro deformation under low stress due to its relatively low strength at a specific high temperature range. Micro forming of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG) as a candidate material for this developing process are feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, the micro formability of Al5083 superplastic alloy and bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$, was investigated with the specially designed micro vibration forming system using pyramid-shape, V-shape and U-shape micro die pattern. With these dies, micro vibration forming was conducted by varying the applied load, time. Micro formability was estimated by comparing the hight of formed shape using non-contact surface profiler system. The vibration load effect to metal flow in the micro die and improve the micro formability of Al5083 superplastic alloy and $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG).

Al5083 초소성 합금과 Zr-BMG의 Cavity 위치에 따른 마이크로 성형연구 (A Study on the Micro Forming of Al-based Superplastic Alloy and Zr-BMG for the Cavity Position)

  • 손선천;박규열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.258-262
    • /
    • 2008
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). In this study, the micro forming property was studied, using Al5083 superplastic alloy with micro grain, suitable for the micro forming process and Zr-BMG amorphous with pseudo-superplastic phenomena in the supercooled liquid state. Micro forming experiments under stastic load status showed that distortion by slip and spin of the grain system and slip inside the grain was observed in the Al5083 superplastic alloy. In case of Zr-BMG, because there is no grain, the distribution of the forming property was similar to the load distribution between punch and metal.

  • PDF

초소성변형의 분자론 (Molecular Theory of Superplastic Deformation)

  • 김창홍;이태규
    • 대한화학회지
    • /
    • 제23권4호
    • /
    • pp.217-236
    • /
    • 1979
  • 소성변형에 대한 著者들의 이론을 초소성합금(Zn-Al eutectoid, A1-Cu, Pb-Sn, Sn-Bi, Mg-Al eutectics)에 적용하였다. 그 결과 초소성합금의 소성변형은 두 개의 grain boundary流動單位의 平行連結로 나타낼 수 있었다. 이 두 개의 流動單位는 流動式에 나타나는 parameter $X_{gj}/{\alpha}_{gj}$${\beta}_{gj}$(j=1 혹온 2)로 表現할 수 있으며 이들을 實驗的으로 求할 수 있었다. 著者들의 流動式은 實驗과 잘 一致하였다. Strain rate sensitivity 對 -In(strain rate) 곡선을 이론으로 구한 결과 유동단위수만큼의 peak가 ${\beta}_{gj}$(j=1 or 2) 값에 따라 분리되어 나타났고 초소성의 조건도 ${beta}_{gj}$값에 의하여 결정됨을 알았다. ${\beta}_{gj}값의 粒子크기 依存性을 구하였고 온도변화에 따른 ${\beta}_{gj}$값 변화로부터 각 流動單位의 활성화엔탈피, ${\Delta}H_{gj}^{\neq}$도 구하였다. 그 결과 ${\Delta}H_{gj}^{\neq}$는 재료성분원소들의 grain boundary 자체확산에 의한 활성화엔탈피와 같이 나타났고 또 이들은 粒子 크기 증가에 마라 증가함을 보였다

  • PDF

티탄계 초소성합금 SP-700의 저사이클 피로수명곡선의 절곡현상에 대하여 (A Study on the Knee Point of Low-cycle Fatigue Life in High Formability Titanium Alloy SP-700)

  • 김민건;;지정근
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.129-135
    • /
    • 1997
  • Previous studies has shown that the curve of low-cycle fatigue life was not expressed with the single line subjected to Manson-Coffin's law type and bent to short life in low ${\Delta}{\varepsilon}_p$ region. The main cause of this phenomenon has been considered that the localization of plastic strain in the crack initiation process fosters the crack initiation. In this study, the low-cycle fatigue life was investigated for each specimens omitted crack initiation process and it was found that fatigue life curve in log(${\Delta}{\varepsilon}_p$)-log($N_f$)was bent in low ${\Delta}{\varepsilon}_p$ region as ever. Therefore, the main cause of appearance of knee point in fatigue life curve is not found in the crack initiation process but in the crack propagation process. In the crack propagation process, the localization of the plastic strain in the vicinity of crack tip and the influence of test environment on the crack propagation rate were observed and these inclinations were more remarkable in low ${\Delta}{\varepsilon}_p$ region. Hence, it was concluded that these two phenomena in the crack propagation process were proved to the main cause which accelerates the crack propagation in low ${\Delta}{\varepsilon}_p$ region and bent the fatigue life curve in result.

  • PDF