• Title/Summary/Keyword: 초분

Search Result 293, Processing Time 0.018 seconds

Uncertainties of SO2 Vertical Column Density Retrieval from Ground-based Hyper-spectral UV Sensor Based on Direct Sun Measurement Geometry (지상관측 기반 태양 직달광 관측장비의 초분광 자외센서로부터 이산화황 연직칼럼농도의 불확실성 분석 연구)

  • Kang, Hyeongwoo;Park, Junsung;Yang, Jiwon;Choi, Wonei;Kim, Daewon;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.289-298
    • /
    • 2019
  • In this present study, the effects of Signal to Noise Ratio (SNR), Full Width Half Maximum (FWHM), Aerosol Optical Depth (AOD), $O_3$ Vertical Column Density ($O_3$ VCD), and Solar Zenith Angle (SZA) on the accuracy of sulfur dioxide Vertical Column Density ($SO_2$ VCD) retrieval have been quantified using the Differential Optical Absorption Spectroscopy (DOAS) method with the ground-based direct-sun synthetic radiances. The synthetic radiances produced based on the Beer-Lambert-Bouguer law without consideration of the diffuse effect. In the SNR condition of 650 (1300) with FWHM = 0.6 nm, AOD = 0.2, $O_3$ VCD = 300 DU, and $SZA=30^{\circ}$, the Absolute Percentage Difference (APD) between the true $SO_2$ VCD values and those retrieved ranges from 80% (28%) to 16% (5%) for the $SO_2$ VCD of $8.1{\times}10^{15}$ and $2.7{\times}10^{16}molecules\;cm^{-2}$, respectively. For an FWHM of 0.2 nm (1.0 nm) with the $SO_2$ VCD values equal to or greater than $2.7{\times}10^{16}molecules\;cm^{-2}$, the APD ranges from 6.4% (29%) to 6.2% (10%). Additionally, when FWHM, SZA, AOD, and $O_3$ VCD values increase, APDs tend to be large. On the other hand, SNR values increase, APDs are found to decrease. Eventually, it is revealed that the effects of FWHM and SZA on $SO_2$ VCD retrieval accuracy are larger than those of $O_3$ VCD and AOD. The SZA effects on the reduction of $SO_2$ VCD retrieval accuracy is found to be dominant over the that of FWHM for the condition of $SO_2$ VCD larger than $2.7{\times}10^{16}molecules\;cm^{-2}$.

Effects of Elevated Temperature after the Booting Stage on Physiological Characteristics and Grain Development in Wheat (밀에서 출수 후 잎의 생리적 특성 및 종실 생장에 대한 수잉기 이후 고온의 효과)

  • Song, Ki Eun;Choi, Jae Eun;Jung, Jae Gyeong;Ko, Jong Han;Lee, Kyung Do;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.307-317
    • /
    • 2021
  • In recent years, global warming has led to frequent climate change-related problems, and elevated temperatures, among adverse climatic factors, represent a critical problem negatively affecting crop growth and yield. In this context, the present study examined the physiological traits of wheat plants grown under high temperatures. Specifically, the effects of elevated temperatures on seed development after heading were evaluated, and the vegetation indices of different organs were assessed using hyperspectral analysis. Among physiological traits, leaf greenness and OJIP parameters were higher in the high-temperature treatment than in the control treatment. Similarly, the leaf photosynthetic rate during seed development was higher in the high-temperature treatment than in the control treatment. Moreover, temperature by organ was higher in the high-temperature treatment than in the control treatment; consequently, the leaf transpiration rate and stomatal conductance were higher in the control treatment than in the high-temperature treatment. On all measuring dates, the weight of spikes and seeds corresponding to the sink organs was greater in the high-temperature treatment than in the control treatment. Additionally, the seed growth rate was higher in the high-temperature treatment than in the control treatment 14 days after heading, which may be attributed to the higher redistribution of photosynthates at the early stage of seed development in the former. In hyperspectral analysis, the vegetation indices related to leaf chlorophyll content and nitrogen state were higher in the high-temperature treatment than in the control treatment after heading. Our results suggest that elevated temperatures after the booting stage positively affect wheat growth and yield.

Studies on the Chilling Injury of Rice seedlings. 1. Characterization of Chilling Injury & Recovery Different Leaf Stages (수도의 유초기 냉해에 관한 연구 1. 유묘기 엽령별 냉해발현 및 회복양태)

  • Kwon, Y.W.; Kim, J.H.;Ahn, S.B.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.1
    • /
    • pp.11-24
    • /
    • 1979
  • To characterize elastic and plastic chilling injury, rice seedlings grown at 28/$16^{\circ}C$ day/night temp. under 20K lux (13hrs.) in a phytotron were subjected to a 11/$6^{\circ}C$, 20K lux condition for 2, 4, 6 or 8 days at 1, 2, 3, 4 or 5th leaf-stage, respectively, followed by further growth under 28/$16^{\circ}C$condition till 30th day after seeding. Japonica variety Jinheung and Chulwon No.1 survived almost 100% without any significant , discoloration and death of leaves due to chilling even under the chilling of 8 days at all seedling ages tested. Tongil and Yushin, varieties from Indica x Japonica cross, showed increasing discoloration of leaves and death of plants with increase in chilling intensity. The longest chilling duration shown seedling death less than 5% was 4, 6, 1, 4, 8 days for Tongil, and 6, 6, 1, 2, 2, days for Yushin at 1, 2, 3, 5th leaf-stage, respectively. The degree of discoloration and death of leaves or suppression of height growth was not explicitly related to seedling death or the dry weight reduction. The degree of seedling death or dry weight reduction could differentiate chilling tolerance of varieties and seedling ages, but somewhat differently. Reduction in dry weight due to chilling occurred even without any visible injury or seedling death. These suggest that both the degree of seedling death and reduction in dry weight should be considered in the test of varieties for chilling tolerance. Combined evaluation of seedling death and dry weight reduction indicated the most susceptible seedling age to chilling injury to be 1 to 2nd leaf-stage for Jinheung, 2 to 3rd leaf-stage for Chulwon No.1, 3rd leaf- stage for Tongil and Yushin, respectively.

  • PDF