• Title/Summary/Keyword: 초분

Search Result 293, Processing Time 0.023 seconds

Estimation of Benthic Microalgae Chlorophyll-a Concentration in Mudflat Surfaces of Geunso Bay Using Ground-based Hyperspectral Data (지상 초분광자료를 이용한 근소만 갯벌표층에서 저서성 미세조류의 엽록소-a 공간분포 추정)

  • Koh, Sooyoon;Noh, Jaehoon;Baek, Seungil;Lee, Howon;Won, Jongseok;Kim, Wonkook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1111-1124
    • /
    • 2021
  • Mudflats are crucial for understanding the ecological structure and biological function of coastal ecosystem because of its high primary production by microalgae. There have been many studies on measuring primary productivity of tidal flats for the estimation of organic carbon abundance, but it is relatively recent that optical remote sensing technique, particularly hyperspectral sensing, was used for it. This study investigates hyperspectral sensing of chlorophyll concentration on a tidal flat surface, which is a key variable in deriving primary productivity. The study site is a mudflat in Geunso bay, South Korea and field campaigns were conducted at ebb tide in April and June 2021. Hyperspectral reflectance of the mudflat surfaces was measured with two types of hyperspectral sensors; TriOS RAMSES (directionalsensor) and the Specim-IQ (camera sensor), and Normal Differenced Vegetation Index (NDVI) and Contiuum Removal Depth (CRD) were used to estimate Chl-a from the optical measurements. The validation performed against independent field measurements of Chl-a showed that both CRD and NDVI can retrieve surface Chl-a with R2 around 0.7 for the Chl-a range of 0~150 mg/m2 tested in this study.

Detection of Toluene Hazardous and Noxious Substances (HNS) Based on Hyperspectral Remote Sensing (초분광 원격탐사 기반 위험·유해물질 톨루엔 탐지)

  • Park, Jae-Jin;Park, Kyung-Ae;Foucher, Pierre-Yves;Kim, Tae-Sung;Lee, Moonjin
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.623-631
    • /
    • 2021
  • The increased transport of marine hazardous and noxious substances (HNS) has resulted in frequent HNS spill accidents domestically and internationally. There are about 6,000 species of HNS internationally, and most of them have toxic properties. When an accidental HNS spill occurs, it can destroys the marine ecosystem and can damage life and property due to explosion and fire. Constructing a spectral library of HNS according to wavelength and developing a detection algorithm would help prepare for accidents. In this study, a ground HNS spill experiment was conducted in France. The toluene spectrum was determined through hyperspectral sensor measurements. HNS present in the hyperspectral images were detected by applying the spectral mixture algorithm. Preprocessing principal component analysis (PCA) removed noise and performed dimensional compression. The endmember spectra of toluene and seawater were extracted through the N-FINDR technique. By calculating the abundance fraction of toluene and seawater based on the spectrum, the detection accuracy of HNS in all pixels was presented as a probability. The probability was compared with radiance images at a wavelength of 418.15 nm to select abundance fractions with maximum detection accuracy. The accuracy exceeded 99% at a ratio of approximately 42%. Response to marine spills of HNS are presently impeded by the restricted access to the site because of high risk of exposure to toxic compounds. The present experimental and detection results could help estimate the area of contamination with HNS based on hyperspectral remote sensing.

Diagnosis of Nitrogen Content in the Leaves of Apple Tree Using Spectral Imagery (분광 영상을 이용한 사과나무 잎의 질소 영양 상태 진단)

  • Jang, Si Hyeong;Cho, Jung Gun;Han, Jeom Hwa;Jeong, Jae Hoon;Lee, Seul Ki;Lee, Dong Yong;Lee, Kwang Sik
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.384-392
    • /
    • 2022
  • The objective of this study was to estimated nitrogen content and chlorophyll using RGB, Hyperspectral sensors to diagnose of nitrogen nutrition in apple tree leaves. Spectral data were acquired through image processing after shooting with high resolution RGB and hyperspectral sensor for two-year-old 'Hongro/M.9' apple. Growth data measured chlorophyll and leaf nitrogen content (LNC) immediately after shooting. The growth model was developed by using regression analysis (simple, multi, partial least squared) with growth data (chlorophyll, LNC) and spectral data (SPAD meter, color vegetation index, wavelength). As a result, chlorophyll and LNC showed a statistically significant difference according to nitrogen fertilizer level regardless of date. Leaf color became pale as the nutrients in the leaf were transferred to the fruit as over time. RGB sensor showed a statistically significant difference at the red wavelength regardless of the date. Also hyperspectral sensor showed a spectral difference depend on nitrogen fertilizer level for non-visible wavelength than visible wavelength at June 10th and July 14th. The estimation model performance of chlorophyll, LNC showed Partial least squared regression using hyperspectral data better than Simple and multiple linear regression using RGB data (Chlorophyll R2: 81%, LNC: 81%). The reason is that hyperspectral sensor has a narrow Full Half at Width Maximum (FWHM) and broad wavelength range (400-1,000 nm), so it is thought that the spectral analysis of crop was possible due to stress cause by nitrogen deficiency. In future study, it is thought that it will contribute to development of high quality and stable fruit production technology by diagnosis model of physiology and pest for all growth stage of tree using hyperspectral imagery.

Synthesis and Properties of Photocurable Pentaerythritol Modified Hyperbranched Acrylate (광경화형 Pentaerythritol 변성 초분지형 아크릴레이트의 합성과 물성)

  • Kim Dong Kook;Lim Jin Kyu;Kim Woo Geun;Heo Jung Lim
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.237-241
    • /
    • 2005
  • Photocurable pentaerythritol modified hyperbranched acrylates were prepared from trimellitic anhydride, glycidyl methacrylate and pentaerythritol derivatives. Thermal stability obtained by using TGA showed that HBMA-1 was superior to the others. Hardness, abrasion resistance and tensile strength of HBMA-1 showed that Hey were also superior to the others. Value of yellow index of HBMA-1 showed the lowest.

Spectral Mixture Analysis using Hyperspectral Image for Hydrological Land Cover/Use Classification (수문학적 토지피복/이용 분류를 위한 초분광영상의 분광혼합분석)

  • Shin Jung-Il;Lee Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.206-209
    • /
    • 2006
  • 강우-유출 모델링에 있어 토지피복/이용 상태는 중요한 입력변수로 사용되지만 기존의 다중분광영상을 이용한 분류에는 한계가 있다. 본 연구에서는 위성탑재 초분광영상인 Hyperion 영상의 분광혼합분석을 통해 도시지역의 수문학적 토지피복/이용 분류를 실시하였으며 분류등급의 기준은 널리 사용되고 있는 SCS 토지피복/이용 등급을 이용하였다. 정확도분석을 위해 항공사진을 디지타이징하여 불투수면적의 비율을 비교하였으며 분광혼합분석 결과와 항공사진에서 불투수면적의 비율은 유사하게 나타났다. 그러나 SCS의 분류등급은 미국을 기준으로 개발되었기 때문에 임계치를 이용하여 분류된 등급과 실제 항공사진판독의 결과가 일부 다르게 나타나는 것을 알 수 있었다.

  • PDF

Optical Design of the STSAT-3 Secondary Payload: COMIS (Compact Hyperspectral Imager) (과학기술위성3호 부탑재체 영상분광기COMIS 광학 설계)

  • Lee, Jun-Ho;Kim, Yong-Min;Jang, Tae-Seong;Yang, Ho-Sun;Lee, Seung-U
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.71-72
    • /
    • 2008
  • 과학기술위성3호 부탑재체로 영상분광기(COMIS, Compact Hyperspectral Imager)가 선정되어 2007년 5월부터 개발이 진행되고 있다. COMIS는 2010년 과학기술위성3호에 탑재 발사되어, 위성 궤도 700km 상공에서 해상도 30m을 가지고, 30km 폭의 지표면 또는 대기를 관측할 수 있다. 현재까지 국내에서 개발된 위성탑재 지구관측카메라가 흑백이거나 다분광(3파장)으로 지구관측을 하는 것에 반하여 COMIS는 가시광 및 근적외선 영역에서 16${\sim}$62대역(4${\sim}$15nm 파장 분해능)의 초분광 관측을 수행하게 된다. 초분광 영상은 관측 대상 물성의 상세 구분이 가능한 관계로 군사적 활용을 포함한 원격 탐사의 주요 활용 분야로 대두되고 있다. 본 논문은 과학기술위성3호 부탑재체로 개발되는 영상분광기인 COMIS(Compact Hyperspectral Imager)의 전반적인 개념, 활용 과학을 먼저 소개하고 상세 광학 설계를 발표한다.

  • PDF