• Title/Summary/Keyword: 초미립자

Search Result 66, Processing Time 0.023 seconds

Use of Ultra Fine Cement Particles as Crack Repair Materials (균열주입재로서 초미립자 시멘트의 이용)

  • 이종열;정연식;이웅종;양승규;채재홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1205-1210
    • /
    • 2000
  • In this research we made the mean cement particle size 4 $\mu\textrm{m}$ which can penetrate even minor cracks based on the theory of J.K. Michel who reported particles can penetrate the crack of width up to 3 times of maximum particle size. The cement slurries were produced by adding super plasticizer. The slurries were tested with slurry characterization methods and its rheological properties were characterized. The early hydrated phenomena of ultra fine cement were observed by SEM, XRD and DSC during 24 hours. Mechanical properties of hardened slurry with JIS molds were also tested in 3, 7 and 28 days. The cracked specimens which were repaired with slurries produced various conditions were tested after 3, 7 and 28 days curing in the air and adhesion properties were characterized.

Ultrasonically Enhanced Dewaterability of Fine Particles (초미립자 탈수성 증대를 위한 초음파 활용에 관한 연구)

  • Oh, Chul;Kim, Byoung-Il;Kim, Young-Uk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.313-320
    • /
    • 2002
  • In accordance with the need of developing a methodology for the sludge reduction, this study investigates the effect of sonication on the dewaterability of the sewage sludge. The investigation involves laboratory experiments of the sewage sludge from Yongin Waste Treatment Plant. The Laboratory tests were conducted under a broad range of conditions including energy levels of ultrasonic waves, time for the treatment, pH, and effect of polymers. The results of the study show that sonication enhances the dewaterability significantly The degree of enhancement varies with sonication power, treatment time, the amount of sludge treated. The effect of sonication on the temperature and pH of the test specimens seems not to be significant. The polymer can be useful to enhance the effectiveness of ultrasound treatment.

  • PDF

Evaluation on the Physical properties of Ultra Fine Cement for Grouting Materials (초미립자 시멘트의 지반 주입재로서의 특성 평가)

  • Park Won-Chun;Mun Kyoung-Ju;Jung Jong-Ju;Soh Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.301-304
    • /
    • 2004
  • The objective of this study is to evaluate the physical properties of ultra fine-ground cement for grouting materials. This study investigates the compressive strength of cement paste, homogenized gel and solidified soil matrix with ultra fine-ground cement. Also It is estimated the injection properties of ultra fine-ground cement. From the test results, the compressive strength of ultra fine-ground cement is higher than that of portland cement. The injection properties are sufficient to apply silt-sand soil and minute-cracked rock bed. Also the properties of soil stability like water permeability coefficient are enough to be adapted various grouting specification.

  • PDF

Properties of fine type cement grouts modified with redispersible polymer powder (재유화형 분말수지 개질 초미립자 시멘트계 균열주입재의 특성)

  • Lee, Chol-Woong;Choi, Nak-Woon;Kim, Byeong-Cheol;Yang, Suk-Woo;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.727-730
    • /
    • 2004
  • The purpose of this study is to evaluate the fundamental properties of fine type cement grouts with redispersible polymer powders. Cement grouts with redispersible polymer powders are prepared with various polymer-cement ratios, and tested. for flow, water absorption, drying shrinkage, flexural and compressive strengths. From the test results, flow of the cement grouts with EVA and Va/VeoVa polymer powers decreased with increasing elapsed time. Regardless of polymer type, the flexural strength of the cement grouts tends to increase with increase in polymer-cement ratio. The maximum compressive strengths of the cement grouts are obtained at a polymer-cement ratio of $5\%$.

  • PDF

Manufacturing and Basic Physical Properties of Ultra Fine Cement with a Multi Air-Classifier of The Dry-Type (다중 낙하 분급기를 이용한 초미립자 시멘트의 제조 및 물리적 기초 특성 분석)

  • Park, Won-Chun;Mun, Kyoung-Ju;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.757-760
    • /
    • 2006
  • This study aims to manufacture ultra fine cement(UFC) with a multi air-classifier of the dry-type. The classifier employed and devised for materials refining was a cyclone type fitted with an air suction device. This study also investigates the basic physical properties and quality of UFC and evaluates its utilizable possibility as a construction material. The basic properties of the UFC containing granulated blast furnace slag were analyzed and examined through recovery ratio, particle size distribution, scanning electron microscopy and compressive strength. Results obtained from the analysis of ultra fine cement have shown that there are possibilities for manufacturing UFC, which could compensate the weak properties of ordinary Portland cement.

  • PDF

세라믹 나노복합재료의 기계적 특성

  • Kim, Chang-Sam
    • Ceramist
    • /
    • v.4 no.3
    • /
    • pp.122-127
    • /
    • 2001
  • 나노복합재료는 기계적, 전기적, 전자기적 특성을 향상하거나 새로운 기능을 갖는 신소재를 제조할 수 있는 가능성으로 인하여 많은 주목을 받고 있다. 우수한 특성을 갖는 나노복합재료의 제조에 있어서 주의할 점은, 나노복합재료가 다른 세라믹재료에 비하여 제조공정에 민감하게 영향을 받는다는 것이다. 출발원료, 혼합방법, 건조방법 등의 선택에 따라서 특성이 향상될 수도 있고 역으로 저하될 수도 있다. 이러한 현상은, 초미립자의 비표면적이 크기 때문에 균일한 분산이 어렵고 응집이 발생하기 쉽기 때문이라 생각된다. $Si_3N_4/SiC$ 나노복합재료의 경우는 고온강도와 열피로에 대한 저항성이 획기적으로 향상되어 $1400^{\circ}C$ 이상에서도 사용할 수 있는 초고온재료로로서의 가능성을 갖고 있다. 그러나 이러한 나노복합재료의 실용화를 위해서는 제조공정이 단순하고, 경제성이 있는 신 공정의 개발과 GPS 소결 등에 관하여 보다 많은 연구가 필요하다. 그러나 계속적인 환경오염에 관한 국제적 규제의 강화, 국제 원유가의 상승 등은 열기관의 열효율 향상을 위해서 초고온에서 사용할 수 있는 나노복합재료와 같은 재료를 요구할 것이며, 또한 정보통신산업 발전에 따른 소형화, 고 기능화는 우수한 특성과 새로운 기능을 갖는 나노복합재료의 개발과 실용화를 앞당기는 계기가 될 것으로 생각된다.

  • PDF

Preparation of $TiO_2$ Pure Nanoparticles by Vapor-Phase Hydrolysis (기상 가수분해에 의한 순수 $TiO_2$ 초미립자의 제조)

  • Lee, Soo-Keun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.9 no.1
    • /
    • pp.11-18
    • /
    • 2003
  • The pure $TiO_2$ particles have been prepared in vapor-phase hydrolysis of titanium tetraisopropoxide(TTIP). The rate of TTIP hydrolysis was so fast that the overall rate of formation of $TiO_2$ was controlled by the rate of mixing of TTIP and $H_2O$. Thus, the primary $TiO_2$ particles were prepared in nano sizes to form chainlike aggregates due to rapid coagulation. The pure $TiO_2$ particles as prepared were amorphous at the reactor set temperatures below $400^{\circ}C$ and became anatase at the temperatures of $450^{\circ}C$ above while the weak rutile peaks were also observed above $800^{\circ}C$. The actual size of primary particles as prepared were reduced by increasing the reactor set temperature while their crystalline sizes as well as BET sizes increased by post-sintering.

  • PDF

Synthesis of ultrafine calcium carbonate powders from high concentrated calcium hydroxide solution (고농도 수산화칼슘 수용액으로부터 초미립 경질 탄산칼슘 분말의 합성)

  • Ahn, Ji-Whan;Park, Charn-Hoon;Kim, Jeong-Heo;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.509-520
    • /
    • 1996
  • Ultrafine calcim carbonate powders with the size of $0.05~0.1\;{\mu}m$ and the calcite phase were synthesized by the nozzle spouting method, which could be only obtained when high calcium ion concentration within slurry was maintained at the beginning of the reaction. But, in the regions of low ${Ca(OH)}_2$ concentration (0.5~1.0 wt%) or high ${Ca(OH)}_2$ concentration (<3.0 wt%), synthesized calcium carbonate powder was shown the large particle size with agglomeration. To obtain ultrafine calcium carbonate powder in this region, the methods of slurry circuation and $CO_{2}$ gas supply were changed during reaction. Resultly, it was possible to synthesize ultrafine particles (${\approx}0.05{\mu}\textrm{m}$)in the regions of low ${Ca(OH)}_2$ concentration (${\approx}0.5wt%$) and high ${Ca(OH)}_2$ concentration (${\approx}0.5wt%$), which can not be obtained the fine calcium carbonate powder still now.

  • PDF

Ultrafine Particle Collection Using an Electret Fiber with a Dipole Charge Distribution (쌍극자전하분포를 가진 정전섬유를 이용한 대전된 초미립자의 집진)

  • Lee Myong-Hwa;Otani Yoshio;Kim Jong-Ho;Kim Shin-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.145-153
    • /
    • 2005
  • An electret fiber with a dipole charge distribution was used to capture charged ultrafine particles in this study. Brownian diffusion and Coulombic force are the dominant collection mechanisms in the electret filtration of charged ultrafine particles. The interaction between Brownian diffusion and Coulombic force for the deposition of ultrafine particles onto a dipolarly charged fiber is studied by solving the convective diffusion equation including Coulombic force as an external force, and the numerical results are compared with the experimental data. As a result, it is shown that there is a negative interaction between Brownian diffusion and Coulombic force, i.e., Coulombic capture efficiency is reduced with decreasing Pe. These results suggest that Brownian diffusion and Coulombic capture efficiency, $\eta$$_{CD}$ is not a simple sum of Brownian diffusion efficiency, $\eta$$_{D}$ and Coulombic capture efficiency, $\eta$$_{C}$.

An Experimental Study for Mechanical Properties of Al-Mg-Mn-Si Alloy by ECA pressing (ECA기법을 활용한 Al-Mg-Mn-Si 합금의 기계적 성질에 관한 연구)

  • Kook, Jong-Han
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.785-792
    • /
    • 2011
  • Equal channel angular(ECA) pressing is the established processing technique in which a polycrystalline metal is pressed through the die to achieve a very high plastic strain. Therefore, the capability to produce an ultra-fine grain size in the materials is provided. To investigate that mechanical properties at elevated temperature have the ultrafine grain ECA pressing, experiments were conducted on an Al-4.8% Mg-0.07% Mn-O.06% Si alloy. After having been solution treated at 773K for 2hrs, the billet for ECA pressing was inserted into the die. And it was pressed through two channel of equal to cross section intersecting at a 90 degree angle. The billet can be extrude repeatedly because of 1:1 extrusion ratio. Since the billet is passed through the cannel for 2 times, a large strain is accumulated in the alloy. The tensile tests on elevated temperature were carried out with initial strain rate of $10^{-3}s^{-1}$ at eight temperature distributed from 293K to 673K.