• Title/Summary/Keyword: 초기 하중

Search Result 921, Processing Time 0.023 seconds

Design Optimization of a RC Building Structure using an Approximate Optimization Technique (근사최적화 기법을 이용한 RC 빌딩의 구조 최적설계)

  • Park, Chang-Hyun;Ahn, Hee-Jae;Choi, Dong-Hoon;Jung, Cheul-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.223-233
    • /
    • 2011
  • A design optimization problem was formulated to minimize the volume of an RC building structure while satisfying design constraints on structural displacements under vertical, wind and seismic loads. We employed metamodel-based design optimization using design of experiments, metamodeling and optimization algorithm to circumvent the difficulty of the automation of structural analysis procedure. Especially, we proposed a design approach of repetitive design optimizations by stages with changing the side constraint values on design variables and limit values on design constraints until a satisfactory design result was obtained. Using the proposed design approach, the volume of the RC building structure has been reduced by 53.3 % compared to the initial one while satisfying all the design constraints. This design result clearly shows the validity of the proposed design approach.

Evaluation for mechanical properties of high strength concrete by stressed test and stressed residual strength test - part 2 strain properties - (설계하중 사전재하 및 잔존강도 시험방법에 따른 고강도콘크리트의 고온특성 평가 - 제2보 변형특성을 중심으로 -)

  • Kim, Young-Sun;Lee, Tae-Gyu;Lee, Dae-Hui;Lee, Seung-Hoon;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.761-764
    • /
    • 2008
  • The present study is aimed to study the effect of elevated temperatures ranging from 20 to $700^{\circ}C$ on the strain properties of high-strength concrete of 40, 60, 80MPa grade. In this study, the types of test were the stressed test and stressed residual test that the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating and when target temperature is reached, the specimens are loaded to failure. Or specimens are loaded to failure after 24hour cooling time. tests were conducted at various temperatures ($20{\sim}700^{\circ}C$) for concretes made with W/B ratios 46%, 32% and 25%. Test results showed that the relative values of elastic modulus decreased with increasing compressive strength grade of specimen and the axial strain at peak stress were influenced by the load before heating. thermal strain of concrete at high temperature was affected by the preload as well as the compressive strength.

  • PDF

Influence of Tightening Torque on Implant-Abutment Screw Joint Stability (조임회전력이 임플랜트-지대주 나사 연결부의 안정성에 미치는 영향)

  • Shin, Hyon-Mo;Jeong, Chang-Mo;Jeon, Yonung-Chan;Yun, Mi-Jeong;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.396-408
    • /
    • 2008
  • Statement of problem: Within the elastic limit of the screw, the greater the preload, the tighter and more secure the screw joint. However, additional tensile forces can incur plastic deformation of the abutment screw when functional loads are superimposed on preload stresses, and they can elicit the loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum preload that will maximize fatigue life and simultaneously offer a reasonable degree of protection against loosening. Another critical factor in addition to the applied torque which can affect the amount of preload is the joint connection type between implant and abutment. Purpose: The purpose of this study was to evaluate the influence of tightening torque on the implant-abutment screw joint stability. Material and methods: Respectively, three different amount of tightening torque (20, 30, and 40 Ncm) were applied to implant systems with three different joint connections, one external butt joint and two internal cones. The initial removal torque value and the postload (cyclic loading up to 100,000 cycles) removal torque value of the abutment screw were measured with digital torque gauge. Then rate of the initial and the postload removal torque loss were calculated for the comparison of the effect of tightening torques and joint connection types between implant and abutment on the joint stability. Results and conclusion: 1. Increase in tightening torque value resulted in significant increase in initial and postload removal torque value in all implant systems (P < .05). 2. Initial removal torque loss rates in SS II system were not significantly different when three different tightening torque values were applied (P > .05), however GS II and US II systems exhibited significantly lower loss rates with 40 Ncm torque value than with 20 Ncm (P < .05). 3. In all implant systems, postload removal torque loss rates were lowest when the torque value of 30 Ncm was applied (P < .05). 4. Postload removal torque loss rates tended to increase in order of SS II, GS II and US II system. 5. There was no correlation between initial removal torque value and postload removal torque loss rate (P > .05).

Experimental study on the longitudinal load transfer of a shallow tunnel depending on the deformation tunnel face (I) (얕은 터널의 굴진면 변형에 따른 종방향 하중전이 특성에 대한 실험적 연구(I))

  • Kim, Yang Woon;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.487-497
    • /
    • 2016
  • If a tunnel is excavated, the released stress is redistributed in the ground around the tunnel face, which lead the stress state of the surrounding ground of the tunnel and the load acting on the tunnel support to change. If the tunnel face deforms, the ground ahead of it is relaxed, and the earth pressure acting on it decreases. And if the displacement increases so much that, the ground ahead of the tunnel face reaches in failure state. At this time, load would be transferred longitudinally in the tunnel, depending on the cover and the face deformations. The longitudinal load transfers in the tunnels induced by the tunnelling has been often studied; however, the relation between the deformation of the tunnel face and the longitudinal load transfer was rarely studied. Therefore in this study assesses the characteristics of the longitudinal load transfer as the face was failed by displacement by conducting a model test in a shallow tunnel. In other words, the longitudinal load transfer of the tunnel with the progress of the face deform was measured by conducting a model test, beginning at the state of earth pressure at rest. As results of this study, most of the longitudinal load transfers occurred drastically at the beginning of the displacement of the tunnel face, and as the displacement of the face approached the ultimate displacement, it converged to the ultimate displacement at a gentler slope. In other words, when the ground ahead of the tunnel face was still in an elastic state, the longitudinally transferred load increased sharply at the beginning stage but it tended to increase gradually if it approached to the ultimate limit. Thus, it was noted that the earth pressure in the face and the longitudinal load transfer of the tunnel had the same decreasing tendency.

A Study on the Ultimate Strength of a Ship's Plate According to Initial Deflection Pattern in used Arc-Length Method (호장증분법에 의한 선체판의 초기처짐형상에 따른 최종강도에 관한 연구)

  • 고재용;박주신;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.21-26
    • /
    • 2003
  • Develop and need design application of carbon sex design concept that consider plasticity in elastic design concept until now. To Place that is representative construction of hull in this research rain deflection pattern analysis technique and grandeur increment method such as general load type increment law and displacement type increment law and Newton-Raphson method increment body law to use jointly compare. Specialty. through analysis by initial deflection pattern. examined closely carbon set conduct of place by initial deflection pattern. Applied thin plate structure which receive compressive load used ANSYS that analysis method is mediocrity finite element analysis program to save complicated conduct that effect that conduct after initial buckling and conduct after secondary buckling get in the whole construction is very big and such and grandeur increment law presumes complicated rain fan shape conduct in bifurcation point specially.

  • PDF

The Thickness of Shear Zone in Granular Materials Using Digital Image Processing (DIP 기법을 이용한 조립토의 전단영역 크기 분석)

  • Min, Tuk-Ki;Kim, Chi-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.89-97
    • /
    • 2006
  • This study investigated the effect of relative density on the thickness of shear zone. Digital image processing was used to measure the thickness of shear zone under plane strain conditions. A suitable epoxy resin was injected into the sample and the thickness of the shear zone was investigated. Four independent condition samples were prepared and the thickness of the shear zone was measured. The results indicated that the thickness of shear zone increases as the initial density of sample increases, and during the shear, the void ratios of the shear zone were changed, but the thickness of shear zone was not changed. In addition, the result of measurement of the thickness showed that the thickness of shear zone was almost fixed before critical state, but beyond critical state, the thickness of shear zone sharply increases as relative density increases.

An Improved Stability Design of Cable-Stayed Bridges using System Buckling and Second-Order Elastic Analysis (활하중의 영향을 고려한 시스템 좌굴해석 및 2차 탄성해석을 이용한 사장교의 개선된 좌굴설계)

  • Kyung, Yong Soo;Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.485-496
    • /
    • 2006
  • Practical stability design method of main members of cable-stayed bridges is proposed and discussed through a design example. For this purpose, initial tensions of stay cables and axial forces of main members are firstly determined using initial shaping analysis of bridges under dead loads. And then the effective buckling length using system elastic/inelastic buckling analysis and bending moments considering $P-{\delta}-{\Delta}$ effect by second-order elastic analysis are calculated for main girder and pylon members subjected to both axial forces and moments, respectively. Particularly, three load combinations of dead and live loads, in which maximum load effects due to live loads are obtained, are taken into account and effects of live loads on effective buckling lengths are investigated.

A Study on Approximate Analysis of Steel Deck Bridges with Guss Asphalt Using Influence Line (영향선을 이용한 강상판 교량의 구스 아스팔트 포장에 대한 근사해석 연구)

  • Seo, Ki-Hong;Ka, Hoon;Kong, Min-Sik;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.127-135
    • /
    • 2006
  • In this study, steel deck bridges are chosen as analytic model to show the structural behaviors generated by high temperature of pavement and to formulate the simplified approximate analysis of thermal effects. In general, the thermal effect is changed by the material property of pavements and environmental temperature as well as shape, size and boundary conditions of bridge. Specially, this effect is the representative initial stress problem dependent on time. The thermal effect, however, does not depend on time and thermal effect is regarded as initial load in this study. After these thermal loading is modelled as moving loads, influence lines of reactions of shoes are calculated and the successive pavement steps with arbitrary segments are determined to minimize the thermal effect of shoes by influence line.

A Study on Relationship between Point Load Strength Index and Abrasion Rate of Sediment Particle (퇴적물 입자의 점하중강도지수와 마식율의 관계에 대한 연구)

  • Kim, Jong-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.808-823
    • /
    • 2008
  • Sediment abrasion in rivers is caused by the interaction between bedrock channel bed and sediment particles transported through the river. Abrasion rate of sediment particles in rivers is controlled by two major factors; Sediment transport conditions including hydraulic conditions form the erosive forces and physical and chemical strengths of the particles form a resistance force against abrasion and other erosional processes. Physical experiments were performed to find the role of each variable on sediment abrasion process. Total 266 sediment particles were used in this experiment. All sediment particles were divided into 11 independent sediment groups with sediment particle size and sediment loads. Each sediment groups were abraded in tumbling mill for up to 8 hours. Changes in weight were recorded by run and total: 2,128 cases of abrasion rate were recoded. Physical strength of rock particles was measured with point load strength index. It is found that sediment abrasion rate has a negative functional relationship point load strength index ($I_{a(50)}$) ($R^2=0.22$). It was suggested that physical strength of sediment particles set the "maximum possible abrasion rate'. As sediment flux increases, abrasion rates of sediment particles with similar point load strength index were changed. It could be concluded that not only physical characteristics of sediment particles, but also sediment transport conditions control sediment abrasion rates.

Measurement of Friction Angle of Sand from Horizontal Stress and Torque Acting on Vane (베인에 작용하는 수평응력과 토크를 이용한 모래의 마찰각 측정)

  • Park, Sung-Sik;Kim, Dong-Rak;Lee, Sae-Byeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.63-71
    • /
    • 2018
  • In this study, the torque and horizontal stress acting on vane were measured and then used to determine a friction angle of sand. A dry Nakdong River sand was prepared for loose and dense conditions in a cell and then pressurized with 25, 50, 75 or 100 kPa from the surface of sand. A vane (5cm in diameter and 10cm in height) was rotated and the torque and horizontal stress were measured at real time. A maximum torque was 3.5-9.5Nm for loose sand and 7.4-17.6Nm for dense sand, respectively. The maximum torque increased as an overburden pressure increased. The maximum torque obtained at 14-20 degrees of vane rotation, which was not influenced by the initial alignment of earth pressure and vane blade. An initial horizontal stress ratio was 0.33-0.35 on the average. The horizontal stress increased initially and then decreased due to particle disturbance. A friction angle was calculated from real time varying horizontal stress and torque, which decreased with increasing overburden pressure. The friction angle of loose sand from vane shear test was similar to that of direct shear test but that of dense sand was overestimated.