• Title/Summary/Keyword: 초기 지중온도

Search Result 30, Processing Time 0.025 seconds

Effect of Confining Pressure, Temperature, and Porosity on Permeability of Daejeon Granite: Experimental Study (대전 화강암의 투수계수에 미치는 구속압, 온도, 공극률의 영향: 실험적 연구)

  • Donggil Lee;Seokwon Jeon
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.71-87
    • /
    • 2024
  • In deep geological disposal of high-level radioactive waste, the surrounding rock at the immediate vicinity of the deposition hole may experience localized changes in permeability due to in-situ stress at depth, swelling pressure from resaturated bentonite buffer, and the heat generated from the decay of radioactive isotopes. In this study, experimental data on changes in permeability of granite, a promising candidate rock type in South Korea, were obtained by applying various confining pressures and temperature conditions expected in the actual disposal environment. By conducting the permeability test on KURT granite specimens under three or more hydrostatic pressure conditions, the relation in which the permeability decreases exponentially as the confining pressure increases was derived. The temperature-induced changes in permeability were found to be negligible at temperatures below the expected maximum of 90℃. In addition, by establishing a relation in which the initial permeability is proportional to the power of the initial porosity, it was possible to estimate permeability value for granite with a specific porosity under a certain confining pressure.

Effects of Soil Temperature on Biodegradation Rate of Diesel Compounds from a Field Pilot Test Using Hot Air Injection Process (고온공기주입 공법 적용시 지중온도가 생분해속도에 미치는 영향)

  • Park Gi-Ho;Shin Hang-Sik;Park Min-Ho;Hong Seung-Mo;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.45-53
    • /
    • 2005
  • The objective of this study is to evaluate the effects of changes in soil temperature on biodegradation rate of diesel compounds from a field pilot test using hot air injection process. Total remediation time was estimated from in-situ biodegradation rate and temperature for optimum biodegradation. All tests were conducted by measuring in-situ respiration rates every about 10 days on highly contaminated area where an accidental diesel release occurred. The applied remediation methods were hot air injection/extraction process to volatilize and extract diesel compounds followed by a bioremediation process to degrade residual diesels in soils. Oxygen consumption rate varied from 2.2 to 46.3%/day in the range of 26 to $60^{\circ}C$, and maximum $O_2$ consumption rate was observed at $32.0^{\circ}C$. Zero-order biodegradation rate estimated on the basis of oxygen consumption rates varied from 6.5 to 21.3 mg/kg-day, and the maximum biodegradation rate was observed at $32^{\circ}C$ as well. In other temperature range, the values were in the decreasing trend. The first-order kinetic constants (k) estimated from in-situ respiration rates measured periodically were 0.0027, 0.0013, and $0.0006d^{-1}$ at 32.8, 41.1, and $52.7^{\circ}C$, respectively. The estimated remediation time was from 2 to 9 years, provided that final TPH concentration in soils was set to 870 mg/kg.

Performance Analysis of a Deep Vertical Closed-Loop Heat Exchanger through Thermal Response Test and Thermal Resistance Analysis (열응답 실험 및 열저항 해석을 통한 장심도 수직밀폐형 지중열교환기의 성능 분석)

  • Shim, Byoung Ohan;Park, Chan-Hee;Cho, Heuy-Nam;Lee, Byeong-Dae;Nam, Yujin
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.459-467
    • /
    • 2016
  • Due to the limited areal space for installation, borehole heat exchangers (BHEs) at depths deeper than 300 m are considered for geothermal heating and cooling in the urban area. The deep vertical closed-loop BHEs are unconventional due to the depth and the range of the typical installation depth is between 100 and 200 m in Korea. The BHE in the study consists of 50A (outer diameter 50 mm, SDR 11) PE U-tube pipe in a 150 mm diameter borehole with the depth of 300 m. In order to compensate the buoyancy caused by the low density of PE pipe ($0.94{\sim}0.96g/cm^3$) in the borehole filled with ground water, 10 weight band sets (4.6 kg/set) were attached to the bottom of U-tube. A thermal response test (TRT) and fundamental basic surveys on the thermophysical characteristics of the ground were conducted. Ground temperature measures around $15^{\circ}C$ from the surface to 100 m, and the geothermal gradient represents $1.9^{\circ}C/100m$ below 100 m. The TRT was conducted for 48 hours with 17.5 kW heat injection, 28.65 l/min at a circulation fluid flow rate indicates an average temperature difference $8.9^{\circ}C$ between inlet and outlet circulation fluid. The estimated thermophysical parameters are 3.0 W/mk of ground thermal conductivity and 0.104 mk/W of borehole thermal resistance. In the stepwise evaluation of TRT, the ground thermal conductivity was calculated at the standard deviation of 0.16 after the initial 13 hours. The sensitivity analysis on the borehole thermal resistance was also conducted with respect to the PE pipe diameter and the thermal conductivity of backfill material. The borehole thermal resistivity slightly decreased with the increase of the two parameters.

Effect of the Temperature Change on the Cone Tip Resistance (지중의 온도변화가 콘 선단저항력에 미치는 영향)

  • Kim, Rae-Hyun;Lee, Woo-Jin;Yoon, Hyung-Koo;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.361-367
    • /
    • 2009
  • The criteria such as ASTM recommends that the zero reading process of CPT must be performed in the same temperature condition with underground in order to reduce the effect of temperature. However, this method can not consider the change of temperature occurred during penetration. In this study, ultra small size temperature sensor with 0.5mm in diameter is manufactured to estimate and compensate the effect of temperature by using FBG sensor. The continuous temperature changes are monitored during cone penetration by using FBG temperature sensor installed in cone penetrometer. The temperature compensated tip resistances show the uniform and similar distributions with depth in different with originally measured tip resistance in cohesive soil. This study verifies that the tip resistances measured by previous zero reading method are affected by the change of underground temperature, and suggests the new temperature compensation technique using by FBG temperature sensor.

  • PDF

Scenario Analysis of Injection Temperature and Injection Rate for Assessing the Geomechanical Stability of CCS (Carbon Capture and Sequestration) System (이산화탄소 격리저장시스템의 역학적 안정성 평가를 위한 주입온도 및 주입량 시나리오 해석)

  • Kim, A-Ram;Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.12-23
    • /
    • 2016
  • For a successful accomplishment of Carbon Capture Sequestration (CCS) projects, appropriate injection conditions should be designed and optimized for site specific geological conditions. In this study, we evaluated the effect of injection conditions such as injection temperature and injection rate on the geomechanical stability of CCS system in terms of TOUGH-FLAC simulator, which is one of the well-known T-H-M coupled analysis methods. The stability of the storage system was assessed by a shear slip potential of the pre-existing fractures both in a reservoir and caprock, expressed by mobilized friction angle and Mohr stress circle. We demonstrated that no tensile fracturing was induced even in the cold CO2 injection, where the injected CO2 temperature is much lower than that of the reservoir and tensile thermal stress is generated, but shear slip of the fractures in the reservoir may occur. We also conducted a scenario analysis by varying injected CO2 volume per unit time, and found out that it was when the injection rate was decreasing in a step-wise that showed the least potential of a shear slip.

Studies on Flowering Habits and Kernel Yields of Peanuts (Arachis hypogaea L.) (비닐피복재배 땅콩의 개화습성과 수량성에 관한 연구)

  • Byeong-Han Choi;;Jung-Il Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.4
    • /
    • pp.71-82
    • /
    • 1979
  • Transparent vinyl-mulching cultivation plots heavy-fertilized (6-14-20 kg $10a^{-1}\; of\; N-P_2O_5-K_2O)$ in growing peanuts produced 315-344Kg $10a^{-1}$ of quality kernels through improvement of the low temperature conditions of underground environment during the early growing stage and kernel-filling stage. The yields of which were 82-99 percent higher than that of conventional cultivation plot. The vinyl-mulching cultivation techniques accelerated emergence, young seedling growth, flowering, pod bearing and kernel filling of peanuts in Korea.

  • PDF

Study on the Dissolution of Sandstones in Gyeongsang Basin and the Calculation of Their Dissolution Coefficients under CO2 Injection Condition (이산화탄소 지중 주입에 의한 경상분지 사암의 용해반응 규명 및 용해 반응상수값 계산)

  • Kang, Hyunmin;Baek, Kyoungbae;Wang, Sookyun;Park, Jinyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.661-672
    • /
    • 2012
  • Lab scale experiments to investigate the dissolution reaction among supercritical $CO_2$-sandstone-groundwater by using sandstones from Gyeongsang basin were performed. High pressurized cell system (100 bar and $50^{\circ}C$) was designed to create supercritical $CO_2$ in the cell, simulating the sub-surface $CO_2$ storage site. The first-order dissolution coefficient ($k_d$) of the sandstone was calculated by measuring the change of the weight of thin section or the concentration of ions dissolved in groundwater at the reaction time intervals. For 30 days of the supercritical $CO_2$-sandstone-groundwater reaction, physical properties of sandstone cores in Gyeongsang basin were measured to investigate the effect of supercritical $CO_2$ on the sandstone. The weight change of sandstone cores was also measured to calculate the dissolution coefficient and the dissolution time of 1 g per unit area (1 $cm^2$) of each sandstone was quantitatively predicted. For the experiment using thin sections, mass of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased, suggesting that plagioclase and calcite of the sandstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites. 0.66% of the original thin sec-tion mass for the sandstone were dissolved after 30 days reaction. The average porosity for C sandstones was 8.183% and it increased to 8.789% after 30 days of the reaction. The average dry density, seismic velocity, and 1-D compression strength of sandstones decreased and these results were dependent on the porosity increase by the dissolution during the reaction. By using the first-order dissolution coefficient, the average time to dissolve 1 g of B and C sandstones per unit area (1 $cm^2$) was calculated as 1,532 years and 329 years, respectively. From results, it was investigated that the physical property change of sandstones at Gyeongsang basin would rapidly occur when the supercritical $CO_2$ was injected into $CO_2$ sequestration sites.

Effect of Root Zone Warming by Hot Water on Rhizosphere Environment and Growth of Greenhouse- grown Oriental Melon (Cucumis melo L.) (온수 지중가온이 참외의 근권환경 및 생육에 미치는 영향)

  • 신용습;이우승;도한우;배수곤;최성국
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.103-109
    • /
    • 1997
  • This experiment was conducted to investigate the effects of root zone warming on rhizosphere temperature of Oriental melon (Cucumis melo L. var. Makuwa) in winter season. Root zone was warmed by hot water flowing through pipe set at 35cm depth from the ridge. Treatments of minimum soil temperature at 20cm depth were 17, 21, $25^{\circ}C$, and non-warmed from Jan. 18 to Apr. 18. The results are summarized as follows. 1. The cumulative soil temperature for 1 month after planting oriental melon was 441, 558, 648, and 735$^{\circ}C$ at control, 17, 21, and $25^{\circ}C$ plot, respectively. 2. As soil temperature was higher, air temperature in tunnel was higher. The lowest temperature in control plot at night was 9.5$^{\circ}C$, 11.$0^{\circ}C$ in 17$^{\circ}C$ plot, 13.5$^{\circ}C$ in 21$^{\circ}C$ plot, and 16.5$^{\circ}C$ in $25^{\circ}C$ plot, respectively. 3. The xylem exudate amount of control plot for 24 hours just after basal stem abscission was 8.1$m\ell$. It was 1.2 times higher in 17$^{\circ}C$ plot, 1.3 times higher in 21 $^{\circ}C$ plot, and 4.8 times higher in $25^{\circ}C$ plot than in control plot at 30 days after planting. The xylem exudate amount at 67 days after planting of control plot was 10.4$m\ell$, those of 17, 21, $25^{\circ}C$ plots were 1.1, 3.2, and 3.3 times as compared to control plot. 4, Early growth in leaf length, stem diameter, leaf number and leaf area for 30 days after planting were better in higher temperature plots than in control plot. Particularly, the increase of leaf area was striking in higher temperature plots. Leaf area of control plot was 279.5$\textrm{cm}^2$ for 30 days after planting, 153.4% in 17$^{\circ}C$ plot, 745.6% in 21$^{\circ}C$ plot and 879.4% in $25^{\circ}C$ plot were increased as compared to in control plot.

  • PDF

Numerical Analysis of Frost Depth behind the Lining of Road Tunnel in Gangwon Province (수치해석을 통한 강원지역 도로터널 라이닝 배면지반의 동결깊이 분석)

  • Son, Hee-Su;Jun, Kyoung-Jea;Yune, Chan-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.3
    • /
    • pp.15-23
    • /
    • 2017
  • Gangwon Province, located in the northeastern part of South Korea, is the coldest area in South Korea with 90% of the total area as mountainous. Therefore, tunnel damage has been reported continuously in winter. But there has been lack of researches on frost heave occurring behind tunnel lining. In this study, numerical analysis was conducted to investigate the frost depth in road tunnel constructed in Gangwon province. Based on the database on road tunnel and weather in Gangwon province, a standard tunnel shape and geotechnical properties of ground was determined. And then thermal analysis for the frost depth according to the temperature change and ground conditions were conducted. Analysis result showed that the sensitivity to frost heave of metamorphic rock and sedimentary rock is higher than sand. Lower initial ground temperature leads to deeper frost depth and consequently increases frost damage. In addition, lining thickness, specific heat capacity, and thermal conductivity also affect greatly on the variation of frost depth.

Influences of Exposures on Dry Matter Yields and Nutrient Contents of Grasses I. Comparative studies of south and north exposure on dry matter yield of temperate grasses (경사방향이 목초의 수량 및 양분함량에 미치는 영향 I. 주요목초에 대한 남북향 사면의 건물수량 비교)

  • 이필상;박근제;신재순;정연규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.2
    • /
    • pp.92-96
    • /
    • 1987
  • To find out the productivity of temperate grasses on the south and north slope, a field experiment was conducted with five forage species of Cactylis glomerata, Festuca arundinacea, Phleum pratense, Agrostis gigantea and Trifolium repens. It was treated by randomized block design with 4 replications and lasted from September, 1983 to October, 1986 in Suweon. The results obtained are summarized as follows: 1. During the vegetative period for three years, the mean surface temperature and soil temperature at a depth of lOcm on the south exposure were 2.0^{\circ}C$ and 0.8^{\circ}C$ respectively higher than that of north slope, but the soil temperature between exposures were practically not different in the mid-summer season. 2. Early growth and development of forage species on the north exposure were better than that of species on the south slope. 3. Average DM yield of grasses on the north slope was much more increased than that of species on the south, however, Trifolium repens was more positive in the south. 4. Otherwise average DM yield of Dactylis glomerata and Festuca arundinacea on the north slope was a little more increased, that of Phleum pratense and Agrostis gigantea was much more increased than that of same forage species on the south.

  • PDF