• Title/Summary/Keyword: 초기 압력

Search Result 714, Processing Time 0.313 seconds

Influence of Plantago Powder on the Physical Properties of the Flour and Dough Rheology of White Pan Bread (질경이 분말첨가가 소맥분의 물리적 특성과 제빵적성에 미치는 영향)

  • 신길만;황성연
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.6
    • /
    • pp.585-590
    • /
    • 2001
  • The purpose of this study was to examine physical properties of the addition of Plantago powder on bread flour and dough fheology of white pan bread. Four levels(0.3, 0.6, 0.9 and 1.2%) of each Plantago powder with bread flour were tested for their effects in dough mixing using rapid visco analyzer, alveogram, farinogram and sensory test. Addition of Plantago powder(0.3, 0.6 and 0.9% ) showed almost same tendency on the initial pasting temperature but 1.2% increased it. Increment of Plantago powder showed increment of peak viscosity and final viscosity, L(extensibility) and G(swelling index) value in alveogram showed decrement with increasing Plantago powder. In farinogram the use of Plantago powder increased consistency and water absorption but decreased development time and stability. White pan bread using Plantago powder had higher value of Max. G and gardeness in rheometer than without using it. Sensory evaluation of white pan bread with 0.6% Plantago powder had the highest score.

  • PDF

Optimized Design of O-ring Groove in LPG Filling Unit Using Taguchi Experimental Method (다구찌 실험법을 이용한 LPG 충전노즐 O-링 그루브의 최적화 설계연구)

  • Kim Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.40-46
    • /
    • 2006
  • In this paper, the optimized design of a rectangular O-ring groove has been analyzed for a maximum Cauchy stress and maximum strain using the Taguchi method. This method may efficiently optimize the design parameters for an O-ring groove of a LPG filling unit. The computed FEM results indicate that the optimized design parameters can only be drawn by nine experimental numbers of iterations when the Taguchi design technique has been employed with a finite element method. This means that the Taguchi design method is very useful for the optimization design of O-ring rectangular groove geometry. Based on the computed FEM results by the Taguchi design technique, the dimensions of a groove geometry are given as h=2.5 mm, d=2.74 mm, c=0.15 mm, and w=3.0 mm. In this study, the initial compression ratio of O-rings is recommended as 8.7% for a gas supply pressure of 18 $kg/cm^2$.

  • PDF

Finite Element Analysis on the Deformation Behavior Stability of Contact Sealing Rings (접촉식 밀봉 링의 변형거동 안정성에 관한 유한요소해석)

  • Kim, Chung Kyun;Kim, Do Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.47-51
    • /
    • 2012
  • In this study, the deformation behavior stability of sealing rings with three different cross sectional areas has been presented using a FEM technique. To investigate the deformation behavior stability, the initial compression rate of 25% has been applied to the sealing ring, which is molded with a nitrile butadiene rubber. The maximum strain, maximum stress, and maximum contact normal stress have been analyzed for the working fluid pressure of $25kgf/cm^2$. The FEM results show that the maximum strain of a hollow o-ring and a hollow rectangular ring with a hollow space in the center of a sealing ring is higher than that of a conventional o-ring, but the maximum stress and the maximum contact normal stress are low. In these results, the sealing rings with a hollow space in the center of the cross sectional area is recommended to increase an extended endurance stability of sealing rings. But, the solid sealing ring is designed to guarantee the sealing safety of a contact sealing ring.

Electro-Optical Characteristics of an ICP Light Source Depending on Driving Temperature and Length of Discharge Tube (구동 온도와 방전관 길이에 따른 ICP 광원의 전기.광학적 특성)

  • Yim, Youn-Chan;Park, Dae-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.107-113
    • /
    • 2008
  • We investigated the electro-optical characteristics of an ICP(Inductively Coupled Plasma) light source depending on driving temperature, and length of discharge tube. An electro-optical stability of a sample at operating was measured to see a steady state of a sample. In this results, we can see that a stability of power loss and luminous flux of a sample at operating of upper 70[min] was 1.45[%1 and 0.36[%]. We measured the optical characteristics of a sample in a thermal chamber operated at a specific temperature divided into 5 steps. While luminance increased with temperature increasing, the decrement of luminance a eared at u or $46.7[^{\circ}C]$. According to Parchen's and Boyle-Charles' law, we can speculate that a pressure was increased and a higher voltage was needed but a ballaster having a rating power can't support a higher voltage corresponding to a pressure change, 0.02[Torr] at $46.7[^{\circ}C]$. Moreover, we measured an a lied power and current of samples depending to a various length of a discharge tube.

The Development of Electric Ballast for a Instant Start/Restart of Metalhalide Lamp (메탈핼라이드램프용 순시점등/재점등 전자식안정기 개발)

  • Kim, Su-Kyoung;Jang, Woo-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.9-15
    • /
    • 2004
  • The most shortcoming of metalhalide lamps is what the instant restarting cannot be realized when the arc tube is in the hot condition. The discharge starting voltage of arc tube in the hot condition is much higher than in the cold condition. Therefore it takes about five minutes to restart the metalhalide lamps, that is to say, it is possible to start when the pressure and the temperature are decreased. But, if the lamp is restarted in the hot condition, we must supply the high voltage pulse with 20[kV] at the both electrode of lamp. The proposed electronic ballast is consist of a electromagnetic interference(EMI) filter, a power factor correction(PFC) circuit, a flyback converter, a half-bridge inverter, and a high voltage igniter circuit. By this composition we can start/restart the lamp with the voltage 20[kV], even if the lamp is in the hot condition.

Sensitivity Analysis of Design Parameters of Air Tightness in Underground Lined Rock Cavern (LRC) for Compressed Air Energy Storage (CAES) (복공식 지하 압축공기에너지 저장공동 기밀시스템 설계변수의 민감도 해석)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Sun-Woo, Choon;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.287-296
    • /
    • 2011
  • We performed a numerical modeling study of thermodynamic and multiphase fluid flow processes associated with underground compressed air energy storage (CAES) in a lined rock cavern (LRC). We investigated air tightness performance by calculating air leakage rate of the underground storage cavern with concrete linings at a comparatively shallow depth of 100 m. Our air-mass balance analysis showed that the key parameter to assure the long-term air tightness of such a system was the permeability of both concrete linings and surrounding rock mass. It was noted that concrete linings with a permeability of less than $1.0{\times}10^{-18}\;m^2$ would result in an acceptable air leakage rate of less than 1% with the operational pressure range between 5 and 8 MPa. We also found that air leakage could be effectively prevented and the air tightness performance of underground lined rock cavern is enhanced if the concrete lining is kept at a higher moisture content.

Estimation of Local Stress Change of Wall-Thinned Pipes due to Fluid Flow (유체유동에 의한 감육배관의 국부응력변화 평가)

  • Kim Young-Jin;Song Ki-Hun;Lee Sang-Min;Chang Yoon-Suk;Choi Jae-Boong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.7-12
    • /
    • 2006
  • In this paper, a new evaluation scheme is suggested to estimate load-carrying capacities of wall thinned pipes. At first, computational fluid dynamics analyses employing steady-state and incompressible flow are carried out to determine pressure distributions in accordance with conveying fluid. Then, the variational pressures are applied as input condition of structural finite element analyses to calculate local stresses at the deepest point. The efficiency of proposed scheme was proven from comparison to conventional analyses results and it is recommended to consider the fluid structure interaction effect for exact integrity evaluation.

  • PDF

Effects of Expanding Methods on Residual Stress of Expansion Transition Area in Steam Generator Tube of Nuclear Power Plants (원전 증기발생기 전열관 확관법이 확관부위 잔류응력에 미치는 영향)

  • Kim, Young Kyu;Song, Myung Ho
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.362-372
    • /
    • 2012
  • The steam generator tubes of nuclear power plants are pressure boundaries, and if tubes are leaked, the coolant with the radioactive materials was flowed out from the primary system to the secondary system and polluted the plant and the air. Recently most crack defects of tubes are stress corrosion cracks and these defects are located in expansion transition area, sludge pile-up region, and U-bend area. The most effective one of crack initiation factors in expansion transition area and U-bend area is the residual stress. According to the experiences of Korea standard nuclear plants(Optimized Power Reactor-1000), they had the stress corrosion cracks at the tube expansion transition area in early operating stage and especially lots of circumferential cracks were occurred. Therefore in this study, the distributions and conditions of residual stresses by tube expansion methods were compared and the dominant reason of a specific direction was examined.

Development and Design of Pulse Gun for Combustion Stability Rating Test (연소 안정성 평가 시험을 위한 펄스건 설계 및 개발 시험)

  • Go,Yeong-Seong;Lee,Gwang-Jin;Lee,Su-Yong;Lee,Dae-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.103-109
    • /
    • 2003
  • The development of a pulse gun used for the combustion stability rating test(SRT) has been domestically tried out since the SRT should be accompanied in the process of the development of LREs. At the beginning of the development, a rupture problem of the pulse gun body had been solved by changing its material and increasing its thickness. Also, the sealing test was undertaken for a pulse gun equipped with a membrane before conducting a explosion test and by using a specially designed jig after a explosion test. Since it is appropriate to reuse the holder of a pulse gun cavity for an actual SRT, a series of experiments for several variants has been taken to make it reusable. After all, the solution for a reusable holder of a pulse gun has been found and applied for complementing its specification.

Optimal Design of Hybrid Motor with HTPB/LOX for Air-Launch Vehicle (공중발사체를 위한 HTPB/LOX 하이브리드 모터의 최적설계)

  • Park, Bong-Kyo;Lee, Chang-Jin;Lee, Jae-Woo;Rhee, Ihn-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.53-60
    • /
    • 2004
  • Optimal design of the hybrid motor has been performed for the first stage of nanosat air launch vehicle using F-4E Phantom as mother plane. Selected design variables are number of ports, the initial oxidizer flux, the combustion chamber pressure, and the nozzle expansion ratio. GBM(Gradient Based Method) and GA(Genetic Algorithm) are simultaneously used to compare the versatility of each algorithm for optimal design in this problem. Also, two objective functions of motor weight, and length are treated separatedly in the optimization to study how the objective function can affect the optimal design. The design results show that the optimal design can be successfully achieved either using GBM or GA regardless of the choice of the objective function; motor weight or length. And nanosat air launch vehicle which has total mass of 704.74kg, and length of first stage 3.74m is designed.