• Title/Summary/Keyword: 초기재령 압축강도

Search Result 187, Processing Time 0.026 seconds

Self-healing Performance Evaluation of Cement Mortar with Inorganic Additives Based on Clinker Binder (클링커 바인더 기반 무기계 혼합재를 활용한 시멘트 모르타르의 치유성능 평가)

  • Jung-Il, Suh;Yoon-Suk, Choi;Byung-Sun, Park;Kwang-Myong, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.561-568
    • /
    • 2022
  • In this study, the mechanical properties and self-healing performance of cement mortar containing clinker binder, calcium sulfoaluminate(CSA), and sodium sulfate(Na2SO4) were evaluated. The mechanical properties of cement mortar were investigated by measuring compressive strength and flexural strength, and the healing performance was evaluated through hydrostatic water permeability test and gas diffusion test. In addition, the healing products precipitated in the cracks were visually observed through an optical microscope and a scanning electron microscope(SEM). As a result, the incorporation of the clinker binder-based inorganic additives improved the initial and 28-day strength by about 20 %. Depending on the healing performance evaluation method, there was a difference in the healing rate, and the healing rate showed a tendency to be underestimated. Nevertheless, CaCO3 was precipitated as the main healing product inside the 0.3 mm crack when the inorganic additives were mixed with cement mortar, improving the self-healing performance.

Mock-up Test of Temperature Crack Reduction Method Application by Setting Time Control of Mat Foundation Mass Concrete (응결시간조정에 의한 매트기초 매스 콘크리트의 온도균열저감 공법적용의 Mock-up Test)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.55-61
    • /
    • 2009
  • Recently, the number of high-rise buildings being built in Korea by major construction companies for residential and commercial use has been increasing. When constructing a high-rise building, it is necessary to apply massive amounts of concrete to form a mat foundation that can withstand the huge load of the upper structure. However, it is of increasing concern that due to limitations in terms of the amount of placing equipment, available job-sites and systems for mass concrete placement in the construction field, it is not always possible to place a great quantity of concrete simultaneously in a large-scale mat foundation, and for this reason consistency between placement lift cannot be secured. In addition, a mat foundation Is likely to crack due to the stress caused by differences inhydration heat generation time. To derive a solution for these problems, this study provides test results of a hydration heat crack reduction method by applying placement lift change and setting time control with a super retarding agent for mass concrete in a large-scale mat foundation. Mock-up specimens with different mixtures and placement liftswere prepared at the job-site of a newly-constructed high-rise building. The test results show that slump flow of concrete before and after adding the super retarding agent somewhat Increases as the target retarding time gets longer, while the air content shows no great difference. The setting time was observed to be retarded as the target retarding time gets longer. As the target retarding time gets longer, compressive strength appears to be decreased at an early stage, but as time goes by, compressive strength gets higher, and the compressive strength at 28 days becomes equal or higher to that of plain concrete without a super retarding agent. For the effect of placement lift change and super retarding agent on the reduction of hydration heat, the application of 2 and 4 placement lifts and a super retarding agent makes it possible to secure consistency and reduce temperature difference between placement lifts, while also extending the time to reach peak temperature. This implies that the possibility of thermal crack induced by hydration heat is reduced. The best results are shown in the case of applying 4 placement lifts.

Characteristics of Early-Age Restrained Shrinkage and Tensile Creep of Ultra-High Performance Cementitious Composites (UHPCC) (초고성능 시멘트 복합체의 초기 재령 구속 수축 및 인장 크리프 특성)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.581-590
    • /
    • 2011
  • Since ultra-high performance cementitious composites (UHPCC) not only represents high early age shrinkage strain due to its low water-to-binder ratio (W/B) and high fineness admixture usage but also reduces the cross section of structure from the higher mechanical properties, it generally has more shrinkage cracks from the restraints of formwork and reinforcing bars. In this study, free and restrained shrinkage experiments were conducted to evaluate the suitability of incorporating both expansive admixture (EA) and shrinkage reducing agent (SRA). The test results indi-cated that approximately 40~44% of free shrinkage strain was decreased. Also, the results showed that 35% and 47% of residual tensile stresses were relieved by synergetic effect of SRA and EA, respectively. Residual tensile stresses from ringtest were relaxed by approximately 61% and 64% of elastic shrinkage stresses due to SRA and EA, respectively, because of the tensile creep effect. Therefore, the creep effect should be considered to precisely estimate the restrained shrinkage behavior of concrete structures. The degree of restraint of UHPCC was approximately in the range of 0.78~0.85. The addition of combined EA and SRA showed minute influence on the degree of restraint. However, the effect decreased when thicker concrete ring was used. Tensile creep strains were measured and compared to the predicted values from 4-parametric prediction model considering time dependent restrained forces.

An experimental study on bonding and bearing capacities of thin spray-on liner to evaluate its applicability as a tunnel support member (터널 지보재로서의 적용성 검토를 위한 박층 뿜칠 라이너의 부착성능과 지보성능의 평가)

  • Han, Jin-Tae;Lee, Gyu-Phil;Park, Young-Taek;Choi, Soon-Wook;Hwang, Gwi-Sung;Choi, Myung-Sik;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.571-583
    • /
    • 2013
  • The use of Thin Spray-on Liner (TSL) as an alternative to shotcrete has drastically increased since 1990s when it was first developed and introduced to mines. In this study, tensile strength test, bond strength test, compression test with specimens coated by TSL, and two kinds of bending tests proposed by EFNARC (2008) were performed with two kinds of TSLs with different material compositions in order to evaluate their support capacities. As a result, both TSLs were shown to be satisfactory for the minimum performance requirements for a structural rock support suggested by EFNARC (2008) and tensile strength of a TSL was shown to increase as its content of polymer was higher. In contrast, its bond strength was shown to increase proportional to the content of a cementitious component especially at the early age.

Mechanical Properties and Reaction Products of Activated Slag System Depending on Gypsum Presence and Calcium Carbonate Addition (석고 존재 및 탄산칼슘 첨가에 따른 활성 슬래그의 역학적 성능 및 반응생성물)

  • Jeong, Yeonung;Lim, Gwi Hwan;Park, Su Hyeon;Kim, Joo Hyung;Kim, Tae-Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.55-63
    • /
    • 2020
  • This study investigates the mechanical properties and reaction products of activated slag pastes depending on gypsum presence and calcium carbonate addition in terms of compressive strength tests and synchrotron X-ray diffraction. The chemicals of CaO and NaOH are used as activators with different two dosages. The reaction of CaO-activated slag without gypsum just accelerated by addition of calcium carbonate at early ages, but no improvement was observed at later ages. On the other hand, the mechanical properties of CaO-activated slag pastes with gypsum were improved with calcium carbonate, enhancing the stability of ettringite. The variation of mechanical properties of NaOH-activated slag pastes was negligible depending on calcium carbonate addition in case of no gypsum. The addition of calcium carbonate into NaOH-activated slag pastes with gypsum deteriorated its mechanical properties due to the ion competition between CO32- ions and SO32- ions, decreasing crystallinity of reaction products.

An Experimental Study on the Hydration Heat of Concrete Using Phosphate based Inorganic Salt (인산계 무기염을 이용한 콘크리트의 수화 발열 특성에 관한 실험적 연구)

  • Jeong, Seok-Man;Kim, Se-Hwan;Yang, Wan-Hee;Kim, Young-Sun;Ki, Jun-Do;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • Whereas the control of the hydration heat in mass concrete has been important as the concrete structures enlarge, many conventional strategies show some limitations in their effectiveness and practicality. Therefore, In this study, as a solution of controling the heat of hydration of mass concrete, a method to reduce the heat of hydration by controlling the hardening of cement was examined. The reduction of the hydration heat by the developed Phosphate Inorganic Salt was basically verified in the insulated boxes filled with binder paste or concrete mixture. That is, the effects of the Phosphate Inorganic Salt on the hydration heat, flow or slump, and compressive strength were analyzed in binary and ternary blended cement which is generally used for low heat. As a result, the internal maximum temperature rise induced by the hydration heat was decreased by 9.5~10.6% and 10.1~11.7% for binder paste and concrete mixed with the Phosphate Inorganic Salt, respectively. Besides, the delay of the time corresponding to the peak temperature was apparently observed, which is beneficial to the emission of the internal hydration heat in real structures. The Phosphate Inorganic Salt that was developed and verified by a series of the aforementioned experiments showed better performance than the existing ones in terms of the control of the hydration heat and other performance. It can be used for the purpose of hydration heat of mass concrete in the future.

A Study on the Characteristics of Mortar Using Foaming Agents (기포제(起泡劑)를 사용(使用)한 모르터의 제특성(諸特性)에 관(關)한 연구(硏究))

  • Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.1
    • /
    • pp.82-94
    • /
    • 1988
  • This study was performed to obtain the basic data which can be applied to use of foaming mortars. The results obtained were summarized as follows ; 1. The lowest water-cement ratios were shown at the mixing ratio of 1 : 1. But, it was gradually increased in poorer mixing ratio and decreased in more addition of foaming agent. The water-cement ratios were decreased up to 1.6-53.1% by mix-foaming type and 4.4-24.1% by pre-foamed type than cement mortar. 2. The highest bulk densities were shown at the mixing ratio of 1 : 1. But, it was gradually decreased in poorer mixing ratio and more addition of foaming agent. The decreasing rates of bulk densities were increased in richer mixing ratio and more addition of foaming agent. 3. The bulk densities were decreased up to 38.8-55.9% by mix-foaming type and 9.7-23.6% by pre-foamed type than cement mortar. 4. The lowest absorption rates were shown at the mixing ratio of 1 : 1. But, it was gradually increased in poorer mixing ratio and more addition of foaming agent. The increasing rates of absorption rates were increased in richer mixing ratio and more addition of foaming agent. 5. Absorption rates when immersed in 72hours were shown up to 3.41-5.85 times greater by mix-foaming type and 1.05-1.55 times greater by pre-foamed type than those of cement mortar. it was significantly higher at the early stage of immersed time than cement mortar. 6. The highest strengths were shown at the mixing ratio of 1 : 1. But, it was gradually decreased in poorer mixing ratio and more addition of foaming agent. The decreasing rates of strengths were increased in poorer mixing ratio and more addition of foaming agent. 7. The strengths were decreased up to 77.0-92.8% by mix-foaming type and 36.7-74.4% by pre-foamed type than cement mortar. 8. The lowest air contents were shown at the mixing ratio of 1 : 1. But, it was gradually increased in poorer mixing ratio and more addition of foaming agent. The increasing rates of air contents were increased in richer mixing ratio and more addition of foaming agent. 9. Air contents were shown up to 26.0-63.8 times greater by mix-foaming type and 5.8-17.7 times greater by pre-foamed type than those of cement mortar. 10. The correlations between bulk density, absorption rate, compressive strength and air content were highly significant. The multiple regression equations of bulk density, absorption rate, compressive strength, tensile strength, bending strength and air content were computed depending on a function of mixing ratio and addition of foaming agent. They were generally highly significant.

  • PDF