• Title/Summary/Keyword: 초기경화시간

Search Result 96, Processing Time 0.025 seconds

Gadolinium-Enhanced Magnetic Resonance Imaging of Atherosclerotic Plaques in Comparison with Histopathology: An In Vivo Study in Aorta of Rabbits (조직병리와 비교한 죽상경화반의 가돌리니움 조영증강 자기공명영상: 토끼 대동맥을 이용한 생체 실험)

  • Choi, Byoung-Wook;Hur, Jin;Lee, Hye-Jeong;Kim, Young-Jin;Kim, Tae-Hoon;Choe, Kyu-Ok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.81-87
    • /
    • 2009
  • Purpose : We sought to evaluate enhancement of plaque with gadolinium-based contrast agent by magnetic resonance imaging (MRI) in comparison with histopathology, namely lipid-rich and macrophage-rich components that were two representative characteristics of plaque vulnerability using atherosclerotic rabbit aorta in order to determine which histopathologic component is relevant to the enhancement. Materials and Methods : New Zealand white rabbit (n=4, weight 3.0 to 3.5 kg, all male) was used for animal model of atherosclerosis. Atherosclerotic aortic lesions were induced by high-cholesterol diet and double balloon injury. T1-weight axial images were acquired before and after gadolinium-based contrast agent using a 3-T MRI. MR images and the matched histopathological sections (n=35) were divided into 4 quadrants or 3 (n=130). Enhancement ratio (ER, ER=SIpost/SIpre) on MRI was calculated for each quadrant and compared with histopathology in regard to lipid-rich and macrophage-rich areas. Results : Lipid-rich quadrants were 72 and fibrous quadrants were 58. The number of quadrants which had macrophage-rich areas was 105 and that of quadrants which did not have macrophage-rich areas was 25. ER was significantly higher in lipid-rich quadrants than in fibrous quadrants (mean ER 2.25c$\pm$0.41 vs. 2.72$\pm$0.65, p=0.013). ER poorly correlated with macrophage-rich areas when lipid-component was controlled (correlation coefficient -0.203, p=0.236). Conclusion : Lipid-rich plaques showed stronger enhancement than fibrous plaques using a standard gadolinium-based extracellular contrast agent. Macrophage infiltration did not correlate with degree of enhancement. Further study is warranted that account for optimal time of imaging after contrast injection using various plaque models from early to advanced stages and all possible parameters associated with contrast enhancement.

  • PDF

Estimation of Transient Creep Crack-tip Stress Fields for SE(B) specimen under Elastic-Plastic-Creep Conditions (탄성-소성-크리프 상태에서 SE(B) 시편의 천이크리프 균열 선단 응력장 평가)

  • Lee, Han-Sang;Je, Jin-Ho;Kim, Dong-Jun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1001-1010
    • /
    • 2015
  • This paper estimates the time-dependent crack-tip stress fields under elastic-plastic-creep conditions. We perform Finite-Element (FE) transient creep analyses for a Single-Edge-notched-Bend (SEB) specimen. We investigate the effect of the initial plasticity on the transient creep by systematically varying the magnitude of the initial step-load. We consider both the same stress exponent and different stress exponent in the power-law creep and plasticity to determine the elastic-plastic-creep behaviour. To estimation of the crack-tip stress fields, we compare FE analysis results with those obtained numerically formulas. In addition, we propose a new equation to predict the crack-tip stress fields when the creep exponent is different from the plastic exponent.

Fundamental characteristics of high early strength low heat concrete according to mineral binder and high early strength material combination (광물질 결합재 및 조강형 재료 조합에 따른 조강형 저발열 콘크리트의 기초적 특성)

  • Kim, Kyoungmin;Son, Hojung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • This study analyzed the fundamental characteristics of concrete according to a ternary system mixing in order to reduce hydration heat of mass concrete and to improve early age strength. The results are as follows. The fluidity of unconsolidated concrete satisfied the target scope regardless of the binder conditions. When the replacement ratio between FA and BS increased, the slump of low heat-A mix and low heat-B mix increased, and air content was not affected by the change of binders. As for setting time, low heat cement mix had the fastest regardless of W/B, and high early strength low heat mix achieved 6 hours' reduction compared with low heat-B mix at initial set, and 12 hours' reduction at the final set respectively. As for the simple hydration heat, the low mix peak temperature was the highest and low heat-B mix had the lowest temperature. And high early strength low heat mix was similar with that of low heat-B. The compressive strength of hardened concrete had similar strength scope in all mixes except for low heat-B mix at early ages, and had unexceptionally similar one without huge differences at long-term ages.

Properties of High Performance Concrete Corresponding to the Replacement Ratio of the Blast Furnace Slag (고로슬래그 미분말의 치환율 변화에 따른 고성능 콘크리트의 특성분석)

  • Kim, Seoung-Hwan;Son, Ho-Jung;Pei, Chang-Chun;Han, Min-Cheol;Baek, Joo-Hyun;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.669-672
    • /
    • 2008
  • To analyze possibility for high performance concrete that massively displaces blast furnace slag, this study analyzed the characteristics of concrete by blast furnace slag displacement rate changes, and the results are summarized as follows. Firstly, as for fresh concrete characteristics, flow tended to increase and air amount decreased with increase in blast furnace slag displacement rate, and settling time was shown delayed. As for hardened concrete characteristics, in conditions where blast furnace slag displacement rate increased up to 50%, the compressive strength decreased below OPC at early age, however at age 28 days, its level was no less than that of OPC, and as for temperature rise by simple insulation, it decreased as displacement rate increased at early stage of hydration, but in the latter stage, hydration progress slowed down and hydration heat increased.

  • PDF

A Study on the Initial Shear Strength Characteristics of Sudden Gelation Grout (순결형 그라우트의 초기 전단강도 특성에 대한 연구)

  • Heo, Hyung-Seok;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.9
    • /
    • pp.33-44
    • /
    • 2020
  • In order to analyze the shear strength characteristics of the grout with sudden gelation in the pre-hardening state, the viscosity of the mixture and the indoor vane shear test were performed. The grout was prepared according to the water-cement (w/c) ratio and the shear strength test was conducted. The plastic-state shear strength of grout was affected by the w/c ratio, so the lower the w/c ratio, the higher the initial shear strength was, and the longer the curing time was, the higher the shear strength was. The maximum shear strength occurred at the faster rotation angle as the higher shear strength was developed, and the lower shear strength occurred at the larger rotation angle. In addition, it was confirmed that the pre-hardening grout rapidly decreased in strength after the maximum shear strength was gained, and converged at a certain level after the rotation angle of the vane blade was about 70° to 90°.

Nuclear Maturation and Pronuclei Formation in Bovine Oocytes Matured In Vitro for Prolonged Period (체외 성숙 시간에 따른 소 난자의 처녀 발생)

  • 유형진;최승철;이상호
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.4
    • /
    • pp.331-337
    • /
    • 1994
  • Response of the oocytes to parthenogenetic activation is one of the indice for cytoplasmic maturation. Maturational age-dependent parthenogenetic activation was examined in bovine oocytes. Follicular oocytes recovered from the slaughter house ovaries were matured in vitro in TCM 199+15% FCS+1Oiu/ml PMSG +10 iu/ml hCG from 24 to 48 h at 6 h intervals. The in vitro matured oocytes were activated by 7% ethanol for 7 min. The nuclear maturation and the cytoplasmic maturation were analysed by the nuclear configuration and pronuclei formation stained by rapid staining method. Cumulus oophori expansion increased as the maturation time increased. Proportions of the nuclear maturation were 81, 89, 72, 60 and 60% in IVM 24, 30, 36, 42 and 48 h groups, respectively. Abnor¬mality in metaphase II chromosome increased sharply from 36 h IVM. The rates of the pronuclei formation and diploid upon ethanol activation were 67, 68, 73, 84 and 87%, and 4, 5, 10, 16 and 20% in IVM 24, 30, 36, 42 and 48 h groups, respectively. It was suggested that maturational age increased the formation of the pronuclei and diploid, and that cytoplasmic maturation require longer maturation period than normal nuclear maturation. These results should be useful for determination of an appropriate time for fertilization in mammalian eggs matured or preincubated in vitro.

  • PDF

Curing Behavior and Interfacial Properties of Electrodeposited Carbon Fiber/Epoxy Composites by Electrical Resistivity Measurement under Tensile/Compressive Tests (전기증착된 탄소섬유/에폭시 복합재료의 인장/압축 하중하에서의 전기저항 측정법을 이용한 경화 및 계면특성)

  • Park, Joung-Man;Lee, Sang-Il;Kim, Jin-Won
    • Journal of Adhesion and Interface
    • /
    • v.2 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • Curing behavior and interfacial properties were evaluated using electrical resistance measurement and tensile/compressive fragmentation test. Electrical resistivity difference (${\Delta}R$) during curing process was not observed in a bare carbon fiber. On the other hand, ${\Delta}R$ appeared due to the matrix contraction in single-carbon fiber/epoxy composite. Logarithmic electrical resistivity of the untreated single-carbon fiber composite increased suddenly to the infinity when the fiber fracture occurred under tensile loading, whereas that of the ED composite reached relatively broadly up to the infinity. Comparing to the untreated case, interfacial shear strength (IFSS) of the ED treated composite increased significantly in both tensile fragmentation and compressive Broutman test. Microfailure modes of the untreated and the ED treated fiber composite showed the debonding and the cone shapes in tensile test, respectively. For compressive test, fractures of diagonal slippage were observed in both untreated and the ED treated composite. Sharp-end shape fractures exhibited in the untreated composite, whereas relatively dull fractures showed in the ED Heated composite. It is proved that ED treatments affected differently on the interfacial adhesion and microfailure mechanism under tensile/compressive tests.

  • PDF

Mechanical and Durability Properties of Partial-Depth Patch Materials using Polymer Materials for Concrete Pavement (단면보수용 콘크리트 패치재료의 역학적 특성 및 내구성 실험)

  • Yang, Sung-Chul;Hwang, In-Dong;Han, Seong-Hwan;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.23-32
    • /
    • 2009
  • In this paper an experimental program was launched to determine the mechanical and durability properties of spall repair materials (RCC: 3 items, PCC: 2 items, PC: 3 items). Test items were mechanical property tests such as setting times, strengths, modulus of elasticity, plastic shrinkage, and durability tests such as dynamic modulus ratio, bond property with freeze-thaw, water absorption, chemical resistance, ultraviolet exposure. Modulus of the PC products exhibits ductile while the modulus is in the order of RCC > PCC > PC. At early ages the PC products experience higher plastic shrinkage than others, henceforth stable at 28 days. Other test results such as dynamic modulus ratio, absorption, and chemical resistance show that the PCs are superior to the PCCs and the RCCs. Except for PC-2, all patch materials had bond strength more than 1.3MPa after freeze-thaw cycles of 200~300 while the PCs and the PCCs seem to be better than the RCCs. With 500 hours of ultraviolet exposure, all patch materials showed to have no crack or deterioration at the surface.

  • PDF

A Comparative Study on Polyurethane Coating Films Prepared Using 4,4'-Methylenebis(2-chloroaniline) and 1,3-Propanediolbis(4-aminobenzoate) as Crosslinking Agents (4,4'-Methylenebis(2-chloroaniline)과 1,3-Propanediolbis(4-aminobenzoate)를 가교제로 사용하여 제조한 폴리우레탄 코팅 필름의 특성 비교)

  • Lee, Youn-Sik;Lee, Sung-Il;Kim, Duk-Bae;Park, Young-Deok;Kim, Jung-Kee;Hahn, Yoon-Bong;Nahm, Kee-Suk
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.71-76
    • /
    • 2004
  • 4,4'-Methylenebis(2-chloroaniline)(MOCA) has been widely used as a crosslinking agent, but classified as a toxic chemical. Thus, its use will be limited in the near future. In this research, polyurethane coating films were prepared using 1,3-propanediolbis(4-aminobenzoate)(PDBA) as an alternative to MOCA. The base part was prepared by melting MOCA or PDBA in polyoxypropylene($M_n$=2000), followed by the addition of the various additives. The NCO-terminated toluene diisocyanate prepolymer was used as a curing agent. The polyurethane coating films were prepared by mixing the base part with the curing agent in an appropriate ratio at room temperature. The polyurethane coatings prepared using PDBA exhibited higher initial viscosity, but much longer pot lift, compared to those prepared using MOCA under the same conditions, due to lower reactivity of PDBA. The tensile strength and tear strength of the coating films were much weaker. However, the pot life, tensile strength, elongation, and tear strength of the coating films, prepared using PDBA in the presence of an increased amount of Pb(II)-octoate, were close to those of the coating films prepared using MOCA. Thus, it was concluded that PDBA can substitute MOCA in the preparation of polyurethane coatings as long as the reactivity of PDBA is enhanced using appropriate amounts of the catalyst or other appropriate catalyst.

Evaluation of Hardening Properties and Dry Shrinkage of Non-Sintered Binder Based Floor Mortar Utilizing Alpha-Hemihydrate Gypsum (알파반수석고를 활용한 비소성결합재 기반 바닥 모르타르의 경화특성 및 건조수축 평가)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Rae-Hwan;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.359-365
    • /
    • 2015
  • Floor mortar experiences dry shrinkage by temperature and humidity difference of internal matrix with material type. Also, since floor mortar is influenced by environmental conditions during placing and curing period, cracks are likely to be occurred. In this study, it was evaluated the hardening and dry shrinkage properties of non-sintered binder based floor mortar utilizing alpha-hemihydrate gypsum which has expansibility in order to prevent crack of the floor mortar. It was applied to the construction site, and examined the effects of external environmental conditions on shrinkage deformation and cracking. Different types of slag accelerated initial and final setting in comparison with cement mortar and its compressive strength was satisfied standard compressive strength for floor mortar. Also shrinkage deformation behavior after the initial expansion exhibited a similar tendency with the cement mortar. From the field application result, no crack was found from slag mortar, and it is determined that the slag mortar has better dimensional stability than cement mortar caused by external environment conditions.