• Title/Summary/Keyword: 초교환상호작용

Search Result 9, Processing Time 0.023 seconds

Electronic and Magnetic Structure Calculations of Diiron Enzymes (이중 철 효소의 전자구조 및 자기구조 계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.106-110
    • /
    • 2015
  • We have studied electronic and magnetic structure of 2 kinds of diiron molecules using OpenMX method based on density functional method. The calculated density of states of diiron-2 is similar with that of diiron-4 because of equal number of 6 ligand atoms. The calculated total energy with antiferromagnetic spin configuration is lower than those of ferromagnetic configurations for both of them. The exchange interaction J of diiiron-4 between $Fe^{+3}$ atoms is one order larger than that of diiron-2, and the calculated J matches well with the experimental one. That comes from the short distance of Fe-O and the high O 2p energy levels. It derives a strong super exchange interaction. The angle of diiron-4 between Fe atoms is bigger than that of diiron-2. It also derives a strong super exchange interaction because of the ${\sigma}$-bond between Fe and O atoms.

Exchange Interaction In $Y_{3-x}Ce_xFe_5O_{12}$ Fabricated Using a Sol-gel Method (Sol-gel 법으로 만든 $Y_{3-x}Ce_xFe_5O_{12}$ 의 초교환상호작용 연구)

  • 금준식;김삼진;김철성;이보화
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.108-109
    • /
    • 2002
  • 자성 garnet(YIG)의 현재 가장 널리 쓰이는 microwave 자성재료 중 하나이며 자기적 손실이 적은 특성을 가지고 있다고 보고되어 지고 있다.[1] Microwave 소자로 응용하기 위해서는 포화자화값 (M$_{s}$ ), 보자력 (H$_{c}$), Neel 온도 (T$_{N}$)등을 제어하는 기술을 요구되어진다. 이러한 자성재료인 Garnet의 결정 내에는 octahedral-16a과 tetrahedral-24d 그리고 dodechahedral-24c의 세 개의 부격자가 있다. 이러한 부격자들에 치환되는 이온에 따라 자기적 교환 상호작용이 달라지게 된다. (중략)

  • PDF

Electronic and Magnetic Structure Calculations of Mn-dimer Molecular Magnet (Mn-dimer 분자자성체의 전자구조 및 자기구조 계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.4
    • /
    • pp.97-100
    • /
    • 2014
  • We have studied electronic and magnetic structure of Mn-dimer molecule using OpenMX method based on density functional method. The calculated density of states shows that the four O atoms split $e_g$ and $t_{2g}$ energy levels. The energy splitting by the crystal field is smaller than bulk MnO with cubic structure, because of small coordination number of atoms. Total energy with antiferromagnetic spin configuration is lower than that of ferromagnetic configurations. Calculated exchange interaction J between Mn atoms is one order larger than that of the other Mn-O magnetic molecules. That comes from the direct exchange interaction between Mn 3d orbitals and the super-exchange interactions caused by strong ${\sigma}$-bonding of Mn-O orbitals.

Electronic and Magnetic Structure Calculations of Cubane-type Co4 Magnetic Molecule (Cubane 구조를 가진 Co4 분자자성체의 전자구조 및 자기구조계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.140-144
    • /
    • 2017
  • We have studied electronic and magnetic structure of cubane-type Co magnetic molecule using density functional method. The calculated density of states show $Co^{+2}$ ionic state and high-spin state because of large exchange interaction between inside Co 3d electrons. The exchange interaction J between Co atoms depends Co-O-Co angle. The calculated J is ferromagnetic with right angles. On the other hand J is antiferromagnetic with large angles since super-exchange interactions between $Co^{+2}$ atoms. It induces that Co cubane has a antiferromagnetic spin structure of AFM1 = [${\uparrow}{\uparrow}{\downarrow}{\downarrow}$]

Electronic Structure Calculations of Cubane-type Cu4 Magnetic Molecule (Cubane 구조를 가진 Cu4 분자자성체의 전자구조 계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.119-123
    • /
    • 2016
  • We have studied electronic and magnetic structure of cubane-type Cu magnetic molecule using density functional method. The calculated density of states show that Cu has 3d $x^2-y^2$ hole orbital because of short distances between Cu atom and in-plane 4 ligand atoms. The calculated total energy with in-plane antiferromagnetic spin configuration is lower than those of ferromagnetic configurations. The calculated exchange interaction J between in-plane Cu atoms is much larger than those between out-plane Cu atoms, since the $x^2-y^2$ hole orbital ordering of Cu 3d orbitals induces strong super-exchange interaction between in-plane Cu atoms.

Neutron Diffraction and Mössbauer Studies of Superexchange Interaction on Al Substituted Co-ferrite (Al이 치환된 Co 페라이트에 관한 뫼스바우어 분광법 및 중성자 회절 연구)

  • Kim, Sam-Jin;Myoung, Bo-Ra;Kim, Chul-Sung;Baek, Kyung-Seon
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.287-292
    • /
    • 2006
  • Al substituted $CoAl_{0.5}Fe_{1.5}O_{4}$ has been studied with x-ray and neutron diffraction, $M\"{o}ssbauer$ spectroscopy and magnetization measurements. $CoAl_{0.5}Fe_{1.5}O_{4}$ revealed a cubic spinel structure of ferrinmagnetic long range ordering at room temperature, with magnetic moments of $Fe^{3+}(A)(-2.29{\mu}_{B}),\;Fe^{3+}(B)(3.81\;{\mu}_{B}),\;Co^{2+}(B)(2.66{\mu}_{B})$, respectively. The temperature dependence of the magnetic hyperfine field in $^{57}Fe$ nuclei at the tetrahedral (A) and octahedral (B) sites was analyzed based on the $N\'{e}el$ theory of magnetism. In the sample of $CoAl_{0.5}Fe_{1.5}O_{4}$, the interaction A-B interaction and intrasublattice A-A superexchange interaction were antiferromagnetic with strengths of $J_{A-B}=-19.3{\pm}0.2k_{B}\;and\;J_{A-A}=-21.6{\pm}0.2k_{B}$, respectively, while the intrasublattice B-B superexchange interaction was found to be ferromagnetic with a strength of $J_{B-B}=3.8{\pm}0.2k_{B}$.

The development and the magnetic properties of sheet hexaferrite magnets (Hexaferrite 쉬트자석의 개발과 자기적 성질에 관한 연구)

  • 김철성;박승일;오영제
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.281-286
    • /
    • 1995
  • In order to study the effect of additives $SiO_{2}$ on the magnetic properties of hexaferrite sheet magnet, we used X-ray diffractometer, Mossbauer spectrometer, and VSM magnetometer. We have prepared $Ba_{0.25}Sr_{0.75}Fe_{12}O_{19}$ green sheets by the Dr. Blade method. Most of samples have a magnetoplurnbite crystal structure of typical M-type hexaferrite. The lattice parameters are found not to be affected by the addition of $SiO_{2}$. ${\alpha}-Fe_{2}O_{3}$ phase develops above $SiO_{2}$ 2.0 wt.%. Isomer shifts indicate that the valence of Fe ions is trivalent. Curie temperatures decrease slightly with increasing $SiO_{2}$ concentrations. It means that the $Si^{4+}$ subsitution for 12k-site $Fe^{3+}$ has an effect on the superexchange interactions Fe-O-Fe, which change the distance and the angle between cations and anions. It was suggested that ${\alpha}-Fe_{2}O_{3}$ phase results from the excessive Fe produced by subsituting $Si^{4+}$ for $Fe^{3+}$. Based upon the results of $Ba_{0.25}Sr_{0.75}Fe_{12}O_{19}$ added with $SiO_{2}$, we concluded that $H_{c}$, $M_{s}$ and $M_{r}$ depend more strongly on the microstructure chracteristics than on the cation substitution.

  • PDF