• Title/Summary/Keyword: 초고해상도 영상 복원

Search Result 16, Processing Time 0.024 seconds

Super-Resolution Image Reconstruction Using Multi-View Cameras (다시점 카메라를 이용한 초고해상도 영상 복원)

  • Ahn, Jae-Kyun;Lee, Jun-Tae;Kim, Chang-Su
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.463-473
    • /
    • 2013
  • In this paper, we propose a super-resolution (SR) image reconstruction algorithm using multi-view images. We acquire 25 images from multi-view cameras, which consist of a $5{\times}5$ array of cameras, and then reconstruct an SR image of the center image using a low resolution (LR) input image and the other 24 LR reference images. First, we estimate disparity maps from the input image to the 24 reference images, respectively. Then, we interpolate a SR image by employing the LR image and matching points in the reference images. Finally, we refine the SR image using an iterative regularization scheme. Experimental results demonstrate that the proposed algorithm provides higher quality SR images than conventional algorithms.

Super-resolution Reconstruction Method for Plenoptic Images based on Reliability of Disparity (시차의 신뢰도를 이용한 플렌옵틱 영상의 초고해상도 복원 방법)

  • Jeong, Min-Chang;Kim, Song-Ran;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.425-433
    • /
    • 2018
  • In this paper, we propose a super-resolution reconstruction algorithm for plenoptic images based on the reliability of disparity. The subperture image generated by the Flanoptic camera image is used for disparity estimation and reconstruction of super-resolution image based on TV_L1 algorithm. In particular, the proposed image reconstruction method is effective in the boundary region where disparity may be relatively inaccurate. The determination of reliability of disparity vector is based on the upper, lower, left and right positional relationship of the sub-aperture image. In our method, the unreliable vectors are excluded in reconstruction. The performance of the proposed method was evaluated by comparing to a bicubic interpolation method, a conventional disparity based method and dictionary based method. The experimental results show that the proposed method provides the best performance in terms of PSNR(Peak Signal to noise ratio), SSIM(Structural Similarity).

A Study on Various Attention for Improving Performance in Single Image Super Resolution (초고해상도 복원에서 성능 향상을 위한 다양한 Attention 연구)

  • Mun, Hwanbok;Yoon, Sang Min
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.898-910
    • /
    • 2020
  • Single image-based super-resolution has been studied for a long time in computer vision because of various applications. Various deep learning-based super-resolution algorithms are introduced recently to improve the performance by reducing side effects like blurring and staircase effects. Most deep learning-based approaches have focused on how to implement the network architecture, loss function, and training strategy to improve performance. Meanwhile, Several approaches using Attention Module, which emphasizes the extracted features, are introduced to enhance the performance of the network without any additional layer. Attention module emphasizes or scales the feature map for the purpose of the network from various perspectives. In this paper, we propose the various channel attention and spatial attention in single image-based super-resolution and analyze the results and performance according to the architecture of the attention module. Also, we explore that designing multi-attention module to emphasize features efficiently from various perspectives.

A Study on Single Image Super Resolution Using Attention Model (Attention 모델을 이용한 단일 영상 초고해상도 복원 기술)

  • Mun, Hwanbok;Yoon, Sang Min
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.537-539
    • /
    • 2020
  • 단일 영상 기반 초고해상도 복원은 컴퓨터 비전 및 영상처리 분야의 중요한 기초 및 응용 분야 중 하나이며, 딥러닝에 대한 연구가 발전됨에 따라 이를 이용한 다양한 연구들이 활발히 진행되고 있다. 기존 딥러닝 기반 연구들은 복원 성능을 높이기 위해서 다양한 구조의 네트워크를 설계하거나 네트워크를 학습하는 알고리즘들을 중점으로 연구되어 왔다. 최근 들어 네트워크 구조나 설계 이외에 네트워크를 통과하는 정보의 집합체인 특징 맵에 관한 연구들이 진행되고 있다. Attention은 특징 맵에서 채널 간의 관계를 이용하여 특정 채널을 강조하거나 또는 공간 정보를 강조하는 방식으로 특징 맵의 정보를 잘 활용하도록 하여 전체적인 네트워크의 성능을 향상시킨다. 본 논문은 단일 영상 기반 초고해상도 복원 네트워크를 기반으로 다양한 Attention방법들을 적용하고 성능을 비교 및 분석한다.

  • PDF

A Study on Super Resolution Image Reconstruction for Acquired Images from Naval Combat System using Generative Adversarial Networks (생성적 적대 신경망을 이용한 함정전투체계 획득 영상의 초고해상도 영상 복원 연구)

  • Kim, Dongyoung
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1197-1205
    • /
    • 2018
  • In this paper, we perform Single Image Super Resolution(SISR) for acquired images of EOTS or IRST from naval combat system. In order to conduct super resolution, we use Generative Adversarial Networks(GANs), which consists of a generative model to create a super-resolution image from the given low-resolution image and a discriminative model to determine whether the generated super-resolution image is qualified as a high-resolution image by adjusting various learning parameters. The learning parameters consist of a crop size of input image, the depth of sub-pixel layer, and the types of training images. Regarding evaluation method, we apply not only general image quality metrics, but feature descriptor methods. As a result, a larger crop size, a deeper sub-pixel layer, and high-resolution training images yield good performance.

UHD TV Image Enhancement using Multi-frame Example-based Super-resolution (멀티프레임 예제기반 초해상도 영상복원을 이용한 UHD TV 영상 개선)

  • Jeong, Seokhwa;Yoon, Inhye;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.154-161
    • /
    • 2015
  • A novel multiframe super-resolution (SR) algorithm is presented to overcome the limitation of existing single-image SR algorithms using motion information from adjacent frames in a video. The proposed SR algorithm consists of three steps: i) definition of a local region using interframe motion vectors, ii) multiscale patch generation and adaptive selection of multiple optimum patches, and iii) combination of optimum patches for super-resolution. The proposed algorithm increases the accuracy of patch selection using motion information and multiscale patches. Experimental results show that the proposed algorithm performs better than existing patch-based SR algorithms in the sense of both subjective and objective measures including the peak signal-to-noise ratio (PSNR) and structural similarity measure (SSIM).

Super-Resolution Algorithm Using Motion Estimation for Moving Vehicles (움직임 추정 기법을 이용한 움직이는 차량의 초고해상도 복원 알고리즘)

  • Kim, Seung-Hoon;Cho, Sang-Bock
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.23-31
    • /
    • 2012
  • This paper proposes a motion estimation-based super resolution algorithm to restore input low-resolution images of large movement into a super-resolution image. It is difficult to find the sub-pixel motion estimation in images of large movement compared to typical experimental images. Also, it has disadvantage which have high computational complexity to find reference images and candidate images using general motion estimation method. In order to solve these problems for the traditional two-dimensional motion estimation using the proposed registration threshold that satisfy the conditions based on the reference image is determined. Candidate image with minimum weight among the best candidates for super resolution images, the restoration process to proceed with to find a new image registration algorithm is proposed. According to experimental results, the average PSNR of the proposed algorithm is 31.89dB and this is better than PSNR of traditional super-resolution algorithm and it also shows improvement of computational complexity.

Super-Resolution Algorithm by Motion Estimation with Sub-pixel Accuracy using 6-Tap FIR Filter (6-Tap FIR 필터를 이용한 부화소 단위 움직임 추정을 통한 초해상도 기법)

  • Kwon, Soon Chan;Yoo, Jisang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.106-109
    • /
    • 2011
  • 본 논문에서는 연속된 프레임을 갖는 영상의 프레임간 움직임 추정 기법을 응용하여 고해상도 영상을 획득하는 초고 해상도 기법을 제안한다. 기존의 단일 영상을 이용한 초고해상도 기법의 경우 영상에서의 고주파 대역을 찾기 위해 확률 기반의 다양한 방법이 제시되었으나 연산에 사용할 수 있는 정보가 제한적이라는 문제가 존재한다. 이러한 문제를 해결하기 위해 연속된 프레임을 이용한 다양한 초고해상도 기법이 제안되었다. 본 논문에서는 주어진 영상의 전, 후의 다수 프레임을 정하여 6-tap FIR(finite impulse response) 필터를 이용하여 프레임들의 부화소(sub-pixel)를 구한 뒤에, 부화소 정밀도의 움직임 추정을 통하여 보다 정확한 고주파성분을 복원하고자 한다. 실험을 통하여 제안하는 기법이 기존의 고등차수(bi-cubic)보간법 보다 선명한 영상을 획득할 수 있었다.

  • PDF