• Title/Summary/Keyword: 초고층건축물

Search Result 308, Processing Time 0.04 seconds

A Research Direction of Structural Fire Resistance Design of Steel Structures for Recommendation of PBD in Korea (국내 PBD 기반 설계를 위한 강구조 구조내화설계 구축방향에 관한 연구(II))

  • Kwon, Young-Jin;Kim, Dong-Eun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.264-269
    • /
    • 2009
  • 최근 초고층구조물 및 대공간구조물등에 대한 소방법의 성능설계등이 법제화되어 시행될 예정으로 있으나 화재성상예측등에 대한 기초적인 연구등이 매우 부족한 실정이며 이에따라 성능설계를 실시하기 위한 기반여건이 매우 취약한 조건이다. 특히 강구조건축물의 경우 초고층구조물의 전형적인 구조형식으로서 성능설계에 대한 연구기반이 조속히 필요한 실정이다. 따라서 본고는 전보에 이어 화재하중등과 밀접한 관련이 있는 가연물조사등과 더불어 이에 대한 이웃 일본건축학회의 강구조건축에 대한 성능적 내화설계방법론중 하중편을 조사하여 향후 국내의 화재하중선정을 위한 기초자료로 사용될수 있도록 하였다.

  • PDF

Dynamic Analysis for Base Isolated Structure with Shear Keys (쉬어키를 가진 면진건축물의 동적해석)

  • Han, Duck-Jeon;Kim, Tae-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.1 s.23
    • /
    • pp.45-53
    • /
    • 2007
  • Recently, high-rise base isolated building structures with shear keys are often constructed in Japan which frequently occurs earthquakes. High-rise buildings are less damaged because those buildings have longer natural period than md or low rise buildings. The shear key is device that prevents the base isolators operating by the wind loads not by the earthquake loads. In case of big base shear force acts on the shear keys by earthquake, this device is broken and base isolator is operated. Therefore, seismic intensities play a role in acting on the shear keys. If wind loads are hither than the earthquake loads, the shear keys designed by wind loads are not operated in earthquakes. So, the requirements of shear keys in high-rise base isolated building structures must be examined in Korea with moderate seismic legions. In this study shear keys are applied with 5 and 15 stories base isolated building structures and investigated their dynamic responses to original and 1/2 scale downed El Centre NS(1940) ground motions. The results show that the yield shear forces of the shear keys affect significantly the dynamic behavior of base isolated building structures

  • PDF

Interrelationship between Shape Irregularity and Structural System of Buildings (건물 형상의 비성형성과 구조시스템의 상관관계 분석)

  • Lee, Jae-Cheol;Kim, Hyun-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.251-254
    • /
    • 2010
  • 본 연구에서는 세계 각지의 초고층 건축물 사례 55개를 대상으로 초고층 형상의 비정형성을 대표적 유형에 따라 분류하고 해당 유형에 적용된 구조시스템을 조사함으로써 건축물의 비정형 형상과 이를 구현하기 위해 적용된 구조시스템간의 상관관계를 분석하였다. 대표적인 비정형 형상을 5개 유형으로 분류하고 구조시스템의 적용빈도를 조사한 결과, 적용 사례가 많은 Extrusions와 Tapers 형태에서는 적용된 구조시스템과의 유의미한 상관관계를 파악할 수 있었으며, 적용 사례가 많지 않은 Twisters, Tilted, Free Form 형태에서는 구조시스템의 상대적 적용 경향을 파악할 수 있었다. 본 연구의 결과는 비정형 형상에 적합한 구조시스템 대안의 우선순위를 설정하고 구조시스템 생성을 위해 형상으로부터 추출해내야 할 초기 파라미터를 선정하는데 활용할 수 있을 것으로 기대된다.

  • PDF

Experimental study on ultra-high strength concrete(130 MPa) (초고강도 콘크리트(130MPa)에 대한 실험적 연구)

  • Cho Choonhwan;Yang Dong-il
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2024
  • High-rise, large-scale, and diversification of buildings are possible, and the reduction of concrete cross-sections reduces the weight of the structure, thereby increasing or decreasing the height of the floor, securing a large number of floors at the same height, securing a large effective space, and reducing the amount of materials, rebar, and concrete used for designating the foundation floor. In terms of site construction and quality, a low water binder ratio can reduce the occurrence of dry shrinkage and minimize bleeding on the concrete surface. It has the advantage of securing self-fulfilling properties by improving fluidity by using high-performance sensitizers, making it easier to construct the site, and shortening the mold removal period by expressing early strength of concrete. In particular, with the rapid development of concrete-related construction technology in recent years, the application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher is expanding in high-rise buildings. However, although high-rise buildings with more than 120 stories have recently been ordered or scheduled in Korea, the research results of developing ultra-high-strength concrete with more than 130 MPa class considering field applicability and testing and evaluating the actual applicability in the field are insufficient. In this study, in order to confirm the applicability of ultra-high-strength concrete in the field, a preliminary experiment for the member of a reduced simulation was conducted to find the optimal mixing ratio studied through various indoor basic experiments. After that, 130 MPa-class ultra-high-strength concrete was produced in a ready-mixed concrete factory in a mock member similar to the life size, and the flow characteristics, strength characteristics, and hydration heat of concrete were experimentally studied through on-site pump pressing.

A Study on the Typological Classification of Super-tall Building and Present State of Masterplan Planning Factor in the Site (초고층건축물의 유형화와 부지 내 배치계획요소 계획현황에 관한 연구)

  • Yang, Ki In;Bang, Ki Jin;Je, Hae Seong
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.71-76
    • /
    • 2010
  • Recently, the construction and plan of super-tall building is attention link of new town development or urban core regeneration. Super-tall Buildings have many advantages and a lot of affects in urban contexts. Also, construction of super-tall building is will be able to social problem like urban core's decline, loss of openspace, incompatible urban scape, traffic congestion of urban core. But, compares to super-tall buildings affects in urban contexts, there was not extra ordinary study about super-tall building by the urban scale approaches. Therefore, need about study materplan planning of the site which is made to meet super-tall building and urban contexts. There are two main processes in this study. First, to analyze the factors affect to masterplan planning of the super-tall building's site. Through the analyzed factors, classify type of super-tall buildings and identify the type's state. Second, to classify and set the elements of masterplan planning factor in the site. Identify the masterplan planning factor's state by deployment materplan planning factor set the current applied to the constructed super-tall buildings. Through this process, identified the recent trend and providied the basic elements of materplan planning of super-tall building's site.

Field Applicability Evaluation Experiment for Ultra-high Strength (130MPa) Concrete (초고강도(130MPa) 콘크리트의 현장적용성 평가에 관한 실험)

  • Choonhwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.20-31
    • /
    • 2024
  • Purpose: Research and development of high-strength concrete enables high-rise buildings and reduces the self-weight of the structure by reducing the cross-section, thereby reducing the thickness of beams and slabs to build more floors. A large effective space can be secured and the amount of reinforcement and concrete used to designate the base surface can be reduced. Method: In terms of field construction and quality, the effect of reducing the occurrence of drying shrinkage can be confirmed by studying the combination of low water bonding ratio and minimizing bleeding on the concrete surface. Result: The ease of site construction was confirmed due to the high self-charging property due to the increased fluidity by using high-performance water reducing agents, and the advantage of shortening the time to remove the formwork by expressing the early strength of concrete was confirmed. These experimental results show that the field application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher can be expanded in high-rise buildings. Through this study, we experimented and evaluated whether ultra-high-strength concrete with a strength of 130 MPa or higher, considering the applicability of high-rise buildings with more than 120 floors in Korea, could be applied in the field. Conclusion: This study found the optimal mixing ratio studied by various methods of indoor basic experiments to confirm the applicability of ultra-high strength, produced 130MPa ultra-high strength concrete at a ready-mixed concrete factory similar to the real size, and tested the applicability of concrete to the fluidity and strength expression and hydration heat.

Structural Cost Optimization Techniques for High-rise Buildings Frame Systems Using High-strength Steels (고강도강재를 사용한 건물골조방식 초고층건물의 구조비용 최적화)

  • Seo, Ji-Hyun;Kwon, Bong-Keun;Kim, Sang-Bum;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.53-63
    • /
    • 2009
  • Use of high-strength steel members in building of high-rise buildings and large scale structures is expected to increase the effectiveness of structural design by reducing the weight and cost of structures. So far, high-strength steel members have been used in a very limited way because it is hard to select the proper strengths of steel members in a systematic way with the consideration of the structural cost. In this paper, therefore, a structural optimization technique based on Genetic algorithm is developed for effective use of high-strength steel members in structural design of high-rise buildings with the form of building frame system. The stability and efficiency of the technique is evaluated by using to a 35-story building. As a result, a stable and reliable optimal solution was obtained with a difference of 2.63% between individual and mean optimal structural costs.