• Title/Summary/Keyword: 초고압부

Search Result 2, Processing Time 0.014 seconds

A Study of the Variation in Intensifier Performance Characteristics Varying with Pressure and Temperature (압력·온도 변화에 따른 초고압 발생기 성능특성 연구)

  • Kim, Hyoung-Eui;Lee, Gi-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1249-1255
    • /
    • 2010
  • An ultra high- pressure system generally consists of a hydraulic power unit, an oil supply unit, an electrical power supply device, and an electrical control device. The hydraulic power unit supplies the hydraulic power to the intensifier to create generate ultra high pressure. The intensifier amplifies increases the pressure using the oil supplied from by the hydraulic power unit. The electrical supply devices and control devices maintain are provided for the electric motors, valves, and sensors. In this study, instead of a flow-control device, a pressure-control type device was mounted on a manifold block in the hydraulic power unit instead of the flow-control type. A servo valve was fitted in the intensifier, and the performance characteristics of the intensifier varied according to the variations of in the pressure cycle and with the temperature of the operating oil in the hydraulic power unit.

System Design and Performance Test of Hydraulic Intensifier (유압 충격압력 발생기의 시스템 설계와 성능평가)

  • Kim, Hyoung-Eui;Lee, Gi-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.947-952
    • /
    • 2010
  • Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions prescribed in ISO and SAE standards. The impulse pressure test machine needs to have a high pressure, a precise control system and a long life. It should satisfy the requirements for fabrication of the impulse tester to generate ultra high pressure in the hydraulic system. In the impulse tester, a servo-valve control system is adopted; although the control application is convenient, it is expensive owing to the cost of developing the system. The type of the control system determines the pressure wave, which affects the components that are tested. In this study, the manufacturing process and the intensifier system design related to the flow, pressure, and the increasing rate of pressure are investigated. The results indicate the ultra high pressure waves in the system.