• Title/Summary/Keyword: 초고강도

Search Result 633, Processing Time 0.029 seconds

Optimal Mix Design of High-Performance, Low-Heat Self-Compacting Concrete (고성능 저발열 자기충전 콘크리트의 최적 배합설계)

  • Kim, Young-Bong;Lee, Jun-Hae;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.4
    • /
    • pp.337-345
    • /
    • 2022
  • The foundation of high-rise concrete building in coastal areas generally must be installed in an integrated manner, not separately, in order to prevent defects caused by stress on the upper and lower parts of the mounting surface and to manage the process smoothly. However, when performing integrated punching, there is a concern that temperature stress cracks may occur due to hydration heat. Due to the large member size, it is difficult to make a sufficient commitment, so it is necessary to mix concrete with high self-charging properties to ensure workability. In this research, the amount of high-performance spray and admixture used was adjusted as experimental variables to satisfy this required performance. Through the analysis of the results for each blending variable, it was found that the unit quantity was 155kg/m3 and the cement ratio in the binder was 18%, and the target values of the pre-concrete properties and compressive strength were satisfied. A four-component binder(18% cement, 50% slag fine powder, 27% fly ash, 5% silica fume) was used.

A Study on the Properties of Fire Endurance and Spalling of High Performance RC Column with the Finishing and Covering Material (고성능 RC 기둥의 마감재 변화에 따른 폭열 및 내화특성에 관한 연구)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Ji, Suk-Won;Kim, Kyoung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.143-152
    • /
    • 2006
  • High performance concrete(HPC) has been widely used in high-rise building. The HPC has several benefits including high strength, high fluidity and high durability. However, spalling is susceptible to occur in HPC and HPC also tends to be deteriorated in the side of fire resistance performance at fire. This paper investigated the spalling prevention of high performance RC column. Control concrete showed severe failure and a case of concrete with fire enduring spraying material exhibited more severe spalling failure than even control concrete. In addition, concrete with fire enduring paint reported the most favorable spalling resistance effect for preventing spall, compared with other concrete covered with finishing materials, such as fire enduring spraying material, gypsum board, marble board and fire enduring PC board. Meanwhile, concrete adding 0.1% of PP fiber demonstrated spalling resistance performance after 3hours load bearing test.

An Experimental Study of Tension Properties on New Developed Up-Set Coupler (Up-Set Coupler 이음철근의 인장특성에 대한 실험적 연구)

  • Sim, Jong-Sung;Park, Cheol-Woo;Kang, Tae-Sung;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.109-115
    • /
    • 2008
  • As structures are getting super-rise and large-sized, introducing the construction methods such as prefabrication of bar-meshes and complex method are being actively discussed to pursue the high quality of reinforced concrete, the simplification of field works, and the reduction of duration, as well as the study on how to connect reinforcing rods, which occurs while applying the same methods, is in progress Also, the pressure welded joint is a kind of method that heats the ends of reinforced bars locally and joint them, and after the pressure welding, the vulnerable part in the reinforced bar occur. Thus, in the construction field, the throughout quality control is necessary because of the delayed duration and the lowered construct ability. In this study, of the traditional lap splice method and the mechanical splice one, the screw coupler, we tried to look into through experiments the prefabrication method of bar-meshes, a typical joint method usually used for the joint parts for PSC structures applying the reinforced bar with its big diameter, and a newly-developed up-set coupler method. And we also examined the characteristic of tensile.

Analysis on the Physical Property of Para-Aramid Filament according to the ATY processing Cordition (ATY 공정조건에 따른 Para Aramid 필라멘트의 물성분석)

  • Kim, Seung-Jin;Park, Mi-Ra;Ma, Hye-Young;Choi, La-Hee;Park, Sung-Woo;Kang, Yoon-Hwa
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.29-29
    • /
    • 2011
  • 아라미드 섬유는 열에 강한 튼튼한 방향족 폴리아마이드 섬유이다. 아마이드는 "85%이상의 아미드(CO-NH)기가 두 개의 방향족 고리에 직접 연결된 합성 폴리아미드로부터 제조된 섬유"로 정의된다. 아라미드 섬유는 크게 파라계와 메타계로 대별되는데 본 연구에서 사용한 파라계 아라미드는 인장강도, 강인성, 내열성이 뛰어나며 고강력 고탄성률을 지니고 있다. 일반적인 유기 섬유와는 다른 우수한 성질을 바탕으로 부직포, UD laminatig, staple 등의 형태로 크게 섬유보강 고무 복합재료 등의 각종 복합재료, 로프, 케이블, 방탄방호용과 같은 산업자재의 용도로 자동차, 우주항공, 정보통신, 국방, 등 다양한 관련 산업분야에서 사용이 확대되고 있는 고부가 소재이며 가격대비 성능비가 우수하기 때문에 세계적으로 산업용 섬유 및 초고성능 섬유시장에서 비중이 증가될 것으로 예상되고 있다. 본 연구에서는 Para-Aramid 필라멘트를 이용하여 ATY를 생산할 때 제조공정조건에 따른 ATY 물성을 알아보고 고강도를 요구하는 방화복, 고무 보강용 섬유 등의 소재에 맞는 ATY 사가공 최적공정조건을 도출하여 체계화된 data-base를 구축하여 생산성 향상 및 품질개선과 함께 산업자재용 직물개발에 응용하고자 한다. 아라미드를 ATY로 제조할 경우, 표면에 생기는 loop로 인하여 타소재와 접착시, 접착제 담지 성능이 향상되어 접착력이 상승되는 반면, 아라미드 ATY가 기존의 아라미드의 물성보다 저하되는 약점을 가지고 있으므로 이를 보완하기 위해 본 연구에서는 ATY 제조공정에서 중요 공정인자인 사속, heater 온도, over feed ratio를 변화시켜 시료를 제조하여 이들의 물성을 분석하여 최적의 물성을 갖는 ATY 사가공 공정을 도출함으로써 물성이 저하되는 문제를 보완 가능할 것으로 기대된다. 물성분석은 강신도, 초기탄성률을 각각 측정하여 인장특성을 확인하였으며, 습열수축률과 건열수축률을 측정하여 시료의 열수축률에 대해 측정을 하였다. 표면의 루프 발현 정도를 보기 위하여 Crimp Rigidity(CR%), 형태 불안정성(instability)등을 측정하였으며, 영상 현미경 시스템을 사용하여 ${\times}40$ 배율로 표면특성을 측정하였다.

  • PDF

The Study of the Optical Current Sensor Using Magneto-Optic Effects (자기광학효과를 이용한 광전류센서에 관한 연구)

  • 전재일;이정수;송시준;정철우;박원주;이광식;김정배;김민수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.47-53
    • /
    • 2003
  • In this paper, we described the laboratory layout of the optical CT in connection with the measurement of large current based on Magneto-Optic Effects. It was used He-Ne laser for light source and was used PIN-Photodiode for light receiver. The sensing section was organized by winding optical fiber around conductor on the concept that the rotation angle of polarizing axis by Faraday Effect is proportional to the applied current in to conduction. The optical signal passed through optical fiber sensor was induced to analyzer arranged in the direction of $\theta$ for input polarization, and then analyzed its rotation angle and researched on operating characteristics of optical CT for 60[Hz] AC current measurement from l00[A] to 1000[A] was carried out. In this results, the output signals induced linearly with the current and proved that the intensity is increased with increasing turns of fiber through output differences which in accordance with turns of fiber and we verified that there is not only difference of the output with the medium between electric field and optical fiber, but also the lineality. Measuring the references and output intensities of the optical CT, ratio errors were within $\pm$7%. This confirmed that error rate will be improved by each medium and turns.

Experimental Study for Structural Behavior of Embed Plate into Concrete Subjected to Welding Heat Input (매입강판 용접열에 의한 고강도 콘크리트 접합부 구조성능 영향평가에 관한 실험적 연구)

  • Chung, Kyung Soo;Kim, Ki Myon;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.569-578
    • /
    • 2013
  • In a super-tall building construction, thick and large-sized embed plates are usually used to connect mega structural steel members to RC core wall or columns by welding a gusset plate on the face of the embed plate with T-shape. A large amount of heat input accumulated by weld passes causes the plates to expand or deform. In addition, the temperature of concrete around the plates also could be increased. Consequently, cracks and spalls occur on the concrete surface. In this study, the effect of weld heat on embed plates and 80MPa high strength concrete is investigated by considering weld position (2G and 3G position), edge distance, concrete curing time, etc. Measured temperature of the embed plates was compared with the transient thermal analysis results. Finally, push-out tests were performed to verify and compare the shear studs capacity of the embed plate with design requirement. Test result shows that the shear capacity of the plate is reduced by 14%-19% due to the weld heat effect and increased as the concrete curing time is longer.

Behavior of Reinforced Concrete Inclined Column-Beam Joints (철근콘크리트 경사기둥-보 접합부의 거동)

  • Kwon, Goo-Jung;Park, Jong-Wook;Yoon, Seok-Gwang;Kim, Tae-Jin;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.147-156
    • /
    • 2012
  • In recent years, many high-rise buildings have been constructed in irregular structural system with inclined columns, which may have effect on the structural behavior of beam-column joints. Since the external load leads to shear and flexural forces on the inclined columns in different way from those on the conventional vertical columns, failure mode, resistant strength, and ductility capacity of the inclined column-beam joints may be different than those of the perpendicular beam-column joints. In this study, six RC inclined beam-column joint specimens were tested. The main parameter of the specimens was the angle between axes of the column and beam (90, 67.5, and 45 degree). Test results indicated that the structural behavior of conventional perpendicular beam-column joint was different to that of the inclined beam-column joints, due to different loading conditions between inclined and perpendicular beam-column joints. Both upper and lower columns of perpendicular beam-column joints were subjected to compressive force, while the upper and lower columns of the inclined beam-column joints were subjected to tensile and compressive forces, respectively.

Evaluation of Chloride and Chemical Resistance of High Performance Mortar Mixed with Mineral Admixture (광물성 혼화재료를 혼입한 고성능 모르타르의 염해 및 화학저항성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Choi, Sung-Yong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.618-625
    • /
    • 2018
  • With the passing of time, exposed concrete structures are affected by a range of environmental, chemical, and physical factors. These factors seep into the concrete and have a deleterious influence compared to the initial performance. The importance of identifying and preventing further performance degradation due to the occurrence of deterioration has been greatly emphasized. In recent years, evaluations of the target life have attracted increasing interest. During the freezing-melting effect, a part of the concrete undergoes swelling and shrinking repeatedly. At these times, chloride ions present in seawater penetrate into the concrete, and accelerate the deterioration due to the corrosion of reinforced bars in the concrete structures. For that reason, concrete structures located onshore with a freezing-melting effect are more prone to this type of deterioration than inland structures. The aim of this study was to develop a high performance mortar mixed with a mineral admixture for the durability properties of concrete structures near sea water. In addition, experimental studies were carried out on the strength and durability of mortar. The mixing ratio of the silica fume and meta kaolin was 3, 7 and 10 %, respectively. Furthermore, the ultra-fine fly ash was mixed at 5, 10, 15, and 20%. The mortar specimens prepared by mixing the admixtures were subjected to a static strength test on the 1st and 28th days of age and degradation acceleration tests, such as the chloride ion penetration resistance test, sulfuric acid resistance test, and salt resistant test, were carried out at 28 days of age. The chloride diffusion coefficient was calculated from a series of rapid chloride penetration tests, and used to estimate the life time against corrosion due to chloride ion penetration according to the KCI, ACI, and FIB codes. The life time of mortar with 10% meta kaolin was the longest with a service life of approximately 470 years according to the KCI code.

Cyclic Behavior of Wall-Slab Joints with Lap Splices of Coldly Straightened Re-bars and with Mechanical Splices (굽힌 후 편 철근의 겹침 이음 및 기계적 이음을 갖는 벽-슬래브 접합부의 반복하중에 대한 거동)

  • Chun, Sung-Chul;Lee, Jin-Gon;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Steel Plate for Rebar Connection was recently developed to splice rebars in delayed slab-wall joints in high-rise building, slurry wall-slab joints, temporary openings, etc. It consists of several couplers and a thin steel plate with shear key. Cyclic loading tests on slab-wall joints were conducted to verify structural behavior of the joints having Steel Plate for Rebar Connection. For comparison, joints with Rebend Connection and without splices were also tested. The joints with Steel Plate for Rebar Connection showed typical flexural behavior in the sequence of tension re-bar yielding, sufficient flexural deformation, crushing of compression concrete, and compression rebar buckling. However, the joints with Rebend Connection had more bond cracks in slabs faces and spalling in side cover-concrete, even though elastic behavior of the joints was similar to that of the joints with Steel Plate for Re-bar Connection. Consequently, the joints with Rebend Connection had less strengths and deformation capacities than the joints with Steel Plate for Re-bar Connection. In addition, stiffness of the joints with Rebend Connection degraded more rapidly than the other joints as cyclic loads were applied. This may be caused by low elastic modulus of re-straightened rebars and restraightening of kinked bar. For two types of diameters (13mm and 16mm) and two types of grades (SD300 and SD400) of rebars, the joints with Steel Plate for Rebar Connection had higher strength than nominal strength calculated from actual material properties. On the contrary, strengths of the joints with Rebend Connection decreased as bar diameter increased and as grade becames higher. Therefore, Rebend Connection should be used with caution in design and construction.

Ablative Mechanism of SiC Coated Carbon/carbon Composites with Ratio of Oxygen to Fuel at Combusion Test (연소시험에서 산소와 연료 비에 따른 탄화규소로 코팅된 탄소/ 탄소 복합재의 삭마 메커니즘)

  • Zhang, Eun-Hee;Kim, Zeong-Baek;Joo, Hyeok-Jong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.227-233
    • /
    • 2007
  • Carbon/carbon (C/C) composites as unique materials possess exceptional thermal resistance with light weight, high stiffness, and strength even at high temperature. However, one serious obstacle for application of the C/C composites is their poor oxidation resistance in high temperature oxidizing environments. SiC coating has been employed to protect the composites from oxidation. This study explored combustion characteristics of 4-directional (4D) carbon/carbon composites using liquid fuel rocket engine to investigate ablative motion of the materials. C/C composites were made of coal tar pitch as a matrix precursor, and heat-treated at $2300^{\circ}C$. Throughout repeated densification process, the density of the material reached $1.903g/cm^3$. After machining 4D C/C composites, the nozzle surface was coated by a SiC layer by pack-cementation method to improve oxidation resistance. Erosion characteristics of SiC-coated C/C composites were measured as function of the ratio of oxygen to fuel. The morphological change of the composites after combustion test was investigated using SEM and erosion mechanism also was discussed.