• Title/Summary/Keyword: 체적팽창

Search Result 153, Processing Time 0.022 seconds

A Study on the Combustion Stabilization and Performance Improvement in the Free-piston Hydrogen Fueled Engine (프리피스톤 수소기관의 연소안정화 및 성능향상에 관한 연구)

  • Noh, K.C.;Yoon, J.S.;Kim, K.M.;Park, S.W.;Lee, J.T.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.227-233
    • /
    • 2006
  • A free-piston hydrogen fueled engine is considered as one of the next power systems which is able to obtain high efficiency and low emission, simultaneously. In this study, in order to ensure the possibility as the next generation power system, the combustion characteristics and the performance of the free-piston hydrogen fueled engine are analyzed by using the linear RICEM for the change of injection pressure and equivalence ratio. As the results, in-cylinder maximum pressure is shown at injection pressure $P_{inj}$=6bar. Backfire phenomenon is not observed under experimental condition and knock occurs over ${\Phi}=0.8$. The thermal efficiency is the highest at injection pressure, $P_{inj}$=6bar and equivalence ratio, ${\Phi}=0.7$, respectively.

Dental Restorative Composite Resins Containing Asymmetric Spiro Orthocarbonate for the Reduction of Volumetric Shrinkage (비대칭 스파이로 오르토카보네이트가 포함된 저수축 치아 수복재)

  • 황미선;김창근
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.321-327
    • /
    • 2004
  • The applications of dental restorative composite resins containing 2,2-bis [4-(2-hydroxy-3-me-thacryloyloxy propoxy) phenyl] propane as a base resin, and triethylene glycol dimethacrylate, as a diluent, were often limited in dentistry due to the relatively large amount of volumetric shrinkage that occurs during the curing reaction. In this study, in order to reduce volumetric shrinkage of the current dental restorative composite resin, asymmetric spiro orthocarbonates were synthesized and then the characteristics of resin composites containing them were explored. The volumetric shrinkage of the dental composites containing spiro orthocarbonates was decreased approximately 45%. However, the curing characteristics and mechanical properties of the new dental composites were slightly poor than those of the commercially available dental composite.

A Study of The Flow Characteristics through a Supersonic Dual Bell Nozzle (초음속 2단 벨노즐(SDBN)을 통하는 유동특성에 관한 연구)

  • 김희동;구병수
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.70-77
    • /
    • 2000
  • Supersonic Dual Bell Nozzle (SDBN) is an altitude-adaptive propulsion nozzle achieved only by a nozzle wall inflection. In order to investigate the altitude adaptive capability and the effectiveness of this nozzle concept, the present study addresses a computational work of the flow through SDBN. Several types of the SDBNs are tested for a wide range of the pressure ratio which covers from an over-expended flow to a fully under-expended flow at the exit of the SDBN. Axisymmetric, compressible, Wavier-Stokes equations are numerically solved using a fully implicit finite volume differencing scheme. The present computational results reveal that the base nozzle length affects the shock wave system occurring inside SDBN. For a quit wide range of the pressure ratio the flow separation occurs at the nozzle inflection point. It is found that the maximum thrust coefficient is obtainable for the correct expansion state at the exit of SDBN.

  • PDF

A Passive Control of the Unsteady Shock-Boundary Layer Interaction in Propulsion Nozzle (추진 노즐에서 발생하는 비정상 충격파-경계층의 간섭현상의 피동제어)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.211-214
    • /
    • 2011
  • In the present work, a computational study was conducted to investigate characteristic of lateral force on the flow fields inside the propulsion nozzle with step. The unsteady, compressible, axisymmetric, Navier-Stocks equations with SST k-${\omega}$ turbulence model are solved using a fully implicit finite volume scheme. In order to simulate the shut-down process of the engine, NPR is varied from 100.0 to 10.0. It is observed that the separation point and Mach-disk strongly depend on the variation of NPR, and adjusting the step lead to significantly different characteristics in the lateral forces.

  • PDF

Preventive Measures on Alkali-Silica Reaction of Crushed Stones (쇄석 골재의 알칼리-실리카 반응 방지 대책)

  • Jun Ssang-Sun;Lee Hyo-Min;Seo Ki-Young;Hwang Jin-Yeon;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.129-137
    • /
    • 2005
  • In Korea, due to the insufficiency of natural aggregates and increasing needs of crushed stones, it is necessary to examine the alkali-silica reaction of the crushed stones. The reaction produces an alkali-silica reaction gel which can imbibe pore solution and swell to generate cracks that are visible In affected concrete. In general, crushed stones are tested by petrograptuc examination, chemical method and mortar-bar method, but the most reliable method Is mortar-bar test. This study tested alkali-silica reactivity of crushed stones of various rock types using ASTM C 227 and C 1260, and compared the results of two test methods. This study also analyzed effects of particle size and grading of reactive aggregate on alkali-silica reaction expansion of mortar-bar. The effectiveness of mineral admixtures to reduce detrimental expansion caused by alkali-silica reaction was investigated through the ASTM C 1260 method. The mineral admixtures used were nv ash, silica fume, metakaolin and ground granulated blast furnace slag. The replacement ratios of 0, 5, 10, 15, 25 and $35\%$ were commonly applied for all the mineral admixtures and the replacement ratios of 45 and $55\%$ were additional applied for the admixtures that could maintain workability. The results indicate that replacement ratios of $25\%$ for ay ash, $10\%$ for silica fume, $25\%$ for metakaolin or $35\%$ for ground granulated blast furnace slag were most effective to reduce alkali-silica reaction expansion under the experimental conditions.

Evaluation on Strain Properties of 60 MPa Class High Strength Concrete according to the Coarse Aggregate Type and Elevated Temperature Condition (60MPa급 고강도 콘크리트의 굵은골재 종류와 고온상태에 따른 변형특성 평가)

  • Yoon, Min-Ho;Choe, Gyeong-Cheol;Lee, Tae-Gyu;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • Strain properties of concrete member which acts as an important factor in the stability of the concrete structure in the event of fire, significantly affected the characteristics of the coarse aggregate, which accounts for most of the volume. For this reason, there are many studies on concrete using artificial lightweight aggregate which has smaller thermal expansion deformation than granite coarse aggregate. But the research is mostly limited on concrete using clay-based lightweight aggregate. Therefore, in this study, the high temperature compressive strength and elastic modulus, thermal strain and total strain, high temperature creep strain of concrete was evaluated. As a result, remaining rate of high-temperature strength of concrete using lightweight aggregate is higher than concrete with general aggregate and it is determined to be advantageous in terms of structural safety and ensuring high-temperature strength from the result of the total strain by loading and strain of thermal expansion. In addition, in the case of high-temperature creep, concrete shrinkage is increased by rising loading and temperature regardless of the type of aggregate, and concrete using lightweight aggregate shows bigger shrinkage than concrete with a granite-based aggregate. From this result, it is determined to require additional consideration on a high temperature creep strain in case of maintaining high temperature like as duration of a fire although concrete using light weight aggregate is an advantage in reducing the thermal expansion strain of the fire.

Optimization of the Refrigerant Charge and the Expansion Valve Opening for the Soft Ice Cream Machine Using R-404A (R-404A를 사용하는 소프트 아이스크림 제조기의 냉매 충전량 및 팽창 밸브 개도 최적화)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.728-734
    • /
    • 2016
  • The improvements of living and lifestyle have led to the increased sales of frozen milk products, such as soft ice cream or slush. These frozen milk products are commonly made in small refrigeration machines. R-502, which has long been used as the refrigerant in soft ice cream machines, is being replaced with R-404A due to the ozone layer depletion issue. In this study, an optimization and performance evaluation were conducted on a soft ice cream machine with a freezer volume of 2.8 liters. The optimization focused on the appropriate refrigerant charge and expansion valve opening. Under the optimized conditions, ice cream was produced in 10 minutes and 5 seconds, and the COP was 0.57. The performance tests included ice cream sales with no interval, ice cream sales with 30 second intervals and under extreme outdoor conditions. The results showed that 20 sales were possible with no interval, and infinite sales could be made with 30 seconds intervals. Ice cream sales were also possible under summer or winter outdoor conditions. The present results may be used for the design of food refrigeration machines as well as to optimize other refrigeration cycles.

Development of High Capacity Lithium Ion Battery Anode Material by Controlling Si Particle Size with Dry Milling Process (건식 분쇄 공정으로 Si 입도 제어를 통한 고용량 리튬이온전지 음극 소재의 개발)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2018
  • Currently graphite is used as an anode active material for lithium ion battery. However, since the maximum theoretical capacity of graphite is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of next generation high capacity and high energy density lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is about 10 times higher than the maximum theoretical capacity of graphite. However, since the volume expansion rate is almost 400%, the irreversible capacity increases as the cycle progresses and the discharge capacity relative to the charge is remarkably reduced. In order to solve these problems, it is possible to control the particle size of the Si anode active material to reduce the mechanical stress and the volume change of the reaction phase, thereby improving the cycle characteristics. Therefore, in order to minimize the decrease of the charge / discharge capacity according to the volume expansion rate of the Si particles, the improvement of the cycle characteristics was carried out by pulverizing Si by a dry method with excellent processing time and cost. In this paper, Si is controlled to nano size using vibrating mill and the physicochemical and electrochemical characteristics of the material are measured according to experimental variables.

Analysis of the Effect of Forest Fires on the Mineralogical Characteristics of Soil (산불 영향에 따른 토층의 광물학적 특성 변화에 관한 연구)

  • Man-Il Kim;Chang-Oh Choo
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.69-83
    • /
    • 2023
  • Forest fires increase the risk of subsequent soil erosion and mass movement in burned areas, even under rainfall conditions below landslide alert thresholds, by destroying plants and vegetation and causing changes to soil properties. These effects of forest fires can alter runoff in burned areas by altering soil composition, component minerals, soil water repellency, soil mass stability, and soil fabric. Heat from forest fires not only burns shallow organic matter and plants but also spreads below the surface, affecting soil constituents including minerals. This study analyzed X-ray diffraction and physical properties of topsoil and subsoil obtained from both burned and non-burned areas to identify the composition and distribution of clay minerals in the soil. Small amounts of mullite, analcite, and hematite were identified in burned soils. Vermiculite and mixed-layer illite/vermiculite (I/V) were found in topsoil samples from burned areas but not in those from non-burned areas. These findings show changes in soil mineral composition caused by forest fires. Expansive clay minerals increase the volume of soil during rainfall, degrading the structural stability of slopes. Clay minerals generated in soil in burned areas are therefore likely to affect the long-term stability of slopes in mountainous areas.

Axial Behavior of Concrete Cylinders Confined with FRP Wires (FRP 와이어 보강 콘크리트 공시체의 압축거동)

  • Cho, Baiksoon;Lee, Jong-Han;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1765-1775
    • /
    • 2013
  • The application of FRP wire as a mean of improving strength and ductility capacity of concrete cylinders under axial compressive load through confinement is investigated experimentally in this study. An experimental investigation involves axial compressive test of three confining amounts of FRP wire and three concrete compressive strengths. The effectiveness of FRP wire confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, circumferential, and volumetric strains. The axial stress-strain relations of FRP wire confined concrete showed bilinear behavior with transition region. It showed strain-hardening behavior in the post-cracking region. The load carrying capacity was linearly increased with increasing of the amount of FRP wire. The ultimate strength of the 35 MPa specimen confined with 3 layer of FRP wire was increased by 286% compared to control one. When the concrete were effectively confined with FRP wire, horizontal cracks were formed by shearing. It was developed from sudden expansion of the concrete due to confinement ruptures at one side while the FRP wire was still working in hindering expansion of concrete at the other side of the crack. The FRP wire failure strains obtained from FRP wire confined concrete tests were 55~90%, average 69.5%, of the FRP wire ultimate uniaxial tensile strain. It was as high as any other FRP confined method. The magnitude of FRP wire failure strain was related to the FRP wire effectiveness.