• 제목/요약/키워드: 체인지 포인트 모델

검색결과 7건 처리시간 0.02초

포인트 / 콘텐츠 소비 행태의 정확한 분석이 필요

  • 송민정
    • 디지털콘텐츠
    • /
    • 1호통권92호
    • /
    • pp.74-81
    • /
    • 2001
  • 본고의 목적은 통신,방송,IT부문 융합현상의 결정체로서 더욱 발전할 것으로 기대되는 인터넷 콘텐츠 사업의 성공전략을 수립하는 것이다. 먼저 콘텐츠 중심의 경쟁모델을 제시하고, 경제적 재화로서 중요해지고 있는 인터넷 콘텐츠의 사업 성공요인을 탐색하기로 한다.

  • PDF

실내 위치 추적을 위한 시공간 데이터 모델 (Spatiotemporal Data Model for Tracing of Indoor Position)

  • 전봉기
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2012년도 춘계 종합학술대회 논문집
    • /
    • pp.435-436
    • /
    • 2012
  • 실내에서는 GPS 신호를 수신할 수 없으므로 자신의 위치를 알 수 없다. 최근에 이러한 문제점을 해결하기 위하여 와이파이 엑세스 포인트(AP)를 이용한 실내 위치 정보 수집 방법들이 제안되고 있다. 본 논문에서는 AP를 이용한 이동체의 이동경로를 저장하는 시공간 데이터 모델 방법을 제안한다.

  • PDF

타원체 모델과 깊이값 포인트 매칭 기법을 활용한 사람 움직임 추적 기술 (Human Motion Tracking based on 3D Depth Point Matching with Superellipsoid Body Model)

  • 김남규
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권2호
    • /
    • pp.255-262
    • /
    • 2012
  • 사람 움직임 추적 알고리즘은 인간과 컴퓨터 상호작용, 화상회의, 감시 시스템, 게임 및 엔터테인먼트 분야에서 반드시 필요한 기술로 인식되고 있다. 과거 다양한 사람 움직임 추적 알고리즘들이 응용 프로그램의 특성에 따라 구현되고, 실시간성을 고려한 보다 효율적인 영상 처리, 컴퓨터 비전, 인터페이스 기술들을 적용하여 구현되고 있다. 본 논문에서는 타원체 형태의 신체 모델과 깊이값 정보를 갖는 3차원 점들과의 매칭을 통해 실시간으로 적용 가능한 움직임 추적 기술을 소개한다. 움직임 추적을 위한 기반 모델은 사람의 모습과 유사한 형태의 타원체 조합의 18개의 관절을 갖는 형태로 구성되어 지며, 영상으로부터 들어온 사람의 모습을 분석하여 일련의 신체 부위를 나누고, 그 정보를 바탕으로 역기구학 기반의 초기 자세를 추출한다. 초기 자세는 3차원 점 매칭 기법을 활용하여 보다 정확한 자세로 수정된다.

의료영상 분할을 위한 3차원 능동 모양 모델 (Three-Dimensional Active Shape Models for Medical Image Segmentation)

  • 임성재;정용연;호요성
    • 전자공학회논문지SC
    • /
    • 제44권5호
    • /
    • pp.55-61
    • /
    • 2007
  • 본 논문은 관심 객체 분할을 위한 통계적 모양 모델에 기반한 3차원 능동 모양 모델링 기법을 제안한다. 3차원 모양 모델을 만들려면 포인트 분산 모델(PDM)의 생성이 필수적인데, 이를 위해서는 모든 학습(training) 데이터에 대응하는 특징점(landmark)을 잘 선택해야 한다. 현재까지도 3차원 데이터에서 대응하는 특징점을 선택하는 방법은 주로 수동적으로 선택하거나 2차원 기반 기법 또는 제한된 3차원 기법이 사용되고 있다. 본 논문에서는 최근에 제안된 "3차원 통계적 모양 모델의 자동생성 기법"의 거리 변환(distance transform)과 사면체(tetrahedron) 알고리듬을 사용하여 3차원 통계적 모양 모델을 생성하고 2차원 능동 모양 모델의 모양 모델 학습과 그레이레벨(gray-level) 모델 학습을 개선하여 확장하고, 스케일(scale)과 그레이레벨 모델을 결합한 3차원 능동 모양 모델 알고리듬으로 관심 객체를 분할한다. 본 논문에서는 제안한 방법을 영역 기반 윤곽선 기반 기법 및 2차원 능동모양모델 기법과 그 성능을 비교하여 평가했다.

모바일 레이저 스캐닝 데이터로부터 철도 시설물 인식에 관한 연구 (Railway Object Recognition Using Mobile Laser Scanning Data)

  • ;좌윤석;손건호;원종운;이석
    • 한국산업정보학회논문지
    • /
    • 제19권2호
    • /
    • pp.85-91
    • /
    • 2014
  • 본 연구는 MLS 데이터로부터 자동으로 철도 시설물들을 인식하여 시설물 간의 기하학적인 공간정보를 추출하는데 기여 하고자 한다. 본 연구에서 제안된 방법은 9개 주요 철도 시설물(노반, 레일, 철로, 수목, 플렛폼, 방음벽, 철주, 절연체, 고압선)들의 분류를 목적으로 하고 있다. 이를 위해 제안된 방법은 크게 두 단계로 나뉘어 진행된다. 첫 번째 단계에서는 포인트, 라인, 체적과 수직 프로파일 레벨에서 데이터의 맥락 특징(contextual feature)들이 추출된다. 두 번째 단계에서는 CRF(Conditional Random Field)가 맥락 분류자(contextual classifier)로 사용되어 각 데이터 포인트에 객체 정보가 할당되고 철도 시설물들이 분류된다. 사용된 CRF 모델은 다른 맥락 분류자 와는 달리 로컬지역에서 데이터들의 분류정보가 일관성을 유지하게 하는 장점이 있다. 제안된 방법의 성능은 commission과 omission 오류분석을 통해 입증되었다.

도로비탈면 상시계측 실측치와 드론 사진측량에 의한 3D 모델값의 정확도 비교분석 (Accuracy Analysis for Slope Movement Characterization by comparing the Data from Real-time Measurement Device and 3D Model Value with Drone based Photogrammetry)

  • 조한광;장기태;홍성진;홍구표;김상환;권세호
    • 한국지리정보학회지
    • /
    • 제23권4호
    • /
    • pp.234-252
    • /
    • 2020
  • 계측기기만을 이용한 현장 상황대응의 재래적 방식에서 벗어나 온라인 '첨단기술(Hi-Technology)'과 오프라인의 '직관적 경험(Hi-Experience)'을 융합한 하이브리드(Hybrid) 재해관리 기법의 유효성을 검증하였다. 이를 위해 대상 현장에 매설된 상시 계측기 GNSS(RTK) 5대를 지상기준점(Ground Control Point, GCP)으로 사용하였다. 또한, 인근 지점에 크기 불변 특징점(Scale Invariant Feature Transform, SIFT) 4곳을 추출하여 검사점(Control Point, CP)으로 활용하였다. 이를 통해 현장 실측치와 드론기반 3차원 측정 결과치와의 정확도를 각 좌표값의 차이의 평균제곱근오차(Root Mean Square Error)를 이용하여 분석하였다. 결과적으로 드론에 의해 획득된 3차원 수치 모델을 정밀하게 후처리 분석함으로써 피사체의 모든 지형지물이 변위추적의 객체로 활용할 수 있음을 확인할 수 있었다. 포인트 클라우드(Point cloud) 기반의 3-D 수치 영상은 현장 그대로의 모습을 초실감, 고정도 가시화 함으로서 직관적인 경험에 공감할 수 있는 친화적인 솔루션을 제공하며, 단순 신호처리 기반의 계측기기 하드웨어 중심의 재해관리를 탈피해 인명피해/예산 절감 등 비탈면 유지관리에 최적의 플랫폼을 제공할 수 있을 것으로 판단된다. 특히, 특정 위치에 설치된 특정지점(Pin-point) 센서에 의존한 국지적인 정보의 한계를 뛰어넘어 기술생산 중심에서 재난관리의 중심으로 신속하게 전환될 수 있는 매개체가 될 것으로 기대한다.

능동모양모델 알고리듬을 위한 삼차원 모델생성 기법 (Three-dimensional Model Generation for Active Shape Model Algorithm)

  • 임성재;정용연;호요성
    • 대한전자공학회논문지SP
    • /
    • 제43권6호
    • /
    • pp.28-35
    • /
    • 2006
  • 통계적 데이터를 이용하여 모양 변이가 가능한 능동모양모델(Active Shape Model, ASM)은 이차원 영상의 분할 및 인식에 성공적으로 사용되고 있다. 삼차원 모델 기반 기법은 객체 경계의 인식 및 묘사(delineating)를 위한 더욱 현실적인 모양 억제력(constraint)을 갖는다는 점에서 이차원 모델 기반 기법에 비해 좋은 결과를 가져온다. 그러나 삼차원 모델 기반 기법을 위해서는 분할된 객체들의 집합인 훈련(training) 데이터로부터 삼차원 모양모델을 생성하는 것이 가장 중요하고 필수적인 단계이며, 현재까지도 커다란 도전 과제로 남아있다. 삼차원 모양모델 생성에서 가장 중요한 단계는 포인트 분산모델(PDM)을 생성하는 것이다. PDM 생성을 위해서는 상응하는 특징점(landmark)을 모든 훈련 데이터의 대응하는 위치에서 선택해야 한다. 그러나 현재까지 많이 사용되는 특징점의 수동 선택 기법은 시간이 많이 소비되며, 많은 오류를 발생한다. 본 논문에서는 삼차원 통계적 모양모델의 생성을 위한 새로운 자동 기법을 제안한다. 주어진 삼차원 훈련 모양 데이터에서, 삼차원 모델은 다음 방법에 의해 생성된다. 1) 훈련 모양 데이터의 거리 변환(distance transform)으로부터 평균(mean) 모양 생성, 2) 평균 모양에서 자동적으로 특징점을 선택하기 위한 사면체(tetrahedron) 기법 사용, 3) 거리 표식(distance labeling) 기법을 통한 각 훈련 모양에서 특징점의 전파(propagating). 본 논문에서는 50명의 복부 CT 영상으로부터 간(liver)을 위한 삼차원 모델을 생성하고, 평가를 위i괘 정확성과 밀집도(compactness)를 조사한다. 기존의 삼차원 모델 생성 기법들은 객체의 모양과 기하학적 및 위상학적으로 심각한 제한을 갖지만, 본 논문에서 제안한 기법은 위와 같은 제한 없이 어느 데이터 집합에도 적용할 수 있다.3mW이며, 시제품 ADC의 칩 면적은 $0.47mm^2$ 이다. 각각 56dB, 65dB이고, 전력 소모는 1.2V 전원 전압에서 각각 4.8mW, 2.4mW이며 제작된 ADC의 칩 면적은 $0.8mm^2$이다.quential scan) 알고리즘과 성능을 비교한다. 실험결과, 제안된 알고리즘은 순차 검색에 비하여 최대 13.2배까지 성능이 향상되었으며, 인덱스의 개수 k가 증가함에 따라 검색 성능도 함께 증가하였다.라서 보다 안전성과 효율성이 뛰어난 2차 대사물질을 찾아내는 연구와 아울러 방제기능이 있는 물질의 생합성경로를 구명하고 대사공학적으로 이용하므로 병해충에 저항성이 있고 잡초 방제효과를 갖는 형질전환 식물을 육성하는 연구가 지속적으로 이루어져야 할 것이다.{\sim}83.8%$ 범위(範圍)를 차지 하였다. 5) 칼슘 섭취량(攝取量)은 권장량 500 mg 에 비(比)하여 양구지역(楊口地域) 아동(兒童)이 $282.4{\sim}355.0mg$이었고 여주지역(麗州地域) 아동(兒童)이 $284.6{\sim}429.0mg$ 이었다. 6) 철(鐵) 섭취량(攝取量)은 권장량 10mg에 비(比)하여 양구지역(楊口地域) 아동(兒童)이 $6.0{\sim}12.1mg$ 범위(範圍)이었고 여주지역(麗州地域) 아동(兒童)이 $6.4{\sim}16.7mg$ 범위(範圍)로 상당수의 아동(兒童)이 권장량에 미달(未達) 되었다. 7) 비터민 A 섭취량(攝取量)은 양구지역(楊口地域)이 $703.4{\sim}1495.6\;IU$ 범위(範圍)이었고 여주지역(麗州地域) 아동(兒童)이 $750.5{\sim}1521.2\;IU$ 범위(範圍)로서 ${\beta}-carotene$으로서의 권장량 5100 I.U,에 비(比)하여 매우 부족되었다