• 제목/요약/키워드: 체외효소

Search Result 74, Processing Time 0.028 seconds

Effect of Monascus Pigment Extract on the Alcohol Metabolism in Rats (흰쥐에 있어서 홍국 색소 추출물이 알코올대사에 미치는 영향)

  • 유대식;최혜정;윤종국
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.603-607
    • /
    • 2003
  • To investigate the alcohol metabolizing system in liver of rats drunken 10% ethanol with Monascus pigment extract (MPE), Sprague-Dawley male rats weighing about 250 g have been drunken 10% ethanol containing 1, 2.5 and 5% Monascus pigment extract for a month. Three groups of rats drunken 10% ethanol with MPE gained somewhat less body weight than normal group, but the changes of body weight was not significantly different among the former groups. All groups drunken MPE supplemented alcohol had no remarkable changes in liver function on the basis of liver weight/body weight, the serum levels of alanine aminotransferase and xanthine oxidase activity. 10% alcohol drunken animals (control group) showed significantly increased activity of hepatic alcohol dehydrogenase (ADH) by 87% compared with normal group and the animals drunken 1%, 2.5% and 5% MPE showed respectively 34%, 29% and 21% increased activity of hepatic ADH, whileas Km value of ADH in 1, 2.5 and 5% MPE group decreased by 40%, 30% and 19% respectively compared with the control, but Vmax showed no significant changes among MPE groups. In case of aldehyde dehydrogenase (ALDH), 1% MPE group showed significantly increased activity by 32% and 2.5% or 5% MPE group showed increasing tendency compared with control, and Km value in three experimental groups declined by 27% and no particular changes were found among those. Furthermore, Vmax value in 1, 2.5 and 5% MEP group increased by 88,56 and 22% respectively with the control. In the aspect of the area under the curve of a ethanol concentration versus time (AUC) profile obtained after administration of 10% alcohol with 1 or 5% MPE, the decreasing rate of AUC to the control was 18% in 1% MPE treated rats whereas 10% in 5% MPE group.

Effects of Bisphenol and Octylphenol on TM3 Cell : Expression of Cytochrome P450scc and Estrogen Receptor $\alpha$ mRNA (Bisphenol과 Octylphenol이 TM3 세포에 미치는 영향: Cytochrome P450scc와 Estrogen Receptor $\alpha$ 유전자의 발현)

  • 이호준;김묘경;강희규;김동훈;한성원;고덕성
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.215-220
    • /
    • 2000
  • Most of endocrine disrupters (EDs) have been reported to exhibit estrogenic or anti-androgenic activity and thereby may disrupt reproductive development in human or wildlife. This study was performed to investigate the effects of estrogen (E$_2$), bisphenol (BP) and octylphenol (OP) on the mouse Leydig cell line (TM3). TM3 originated from testis of 11~13-daly-old BALB/c nu/+ mice was cultured in DMEM supplemented with 10% FBS alone or medium with estrogen (E$_2$), bisphenol (BP) and octylphenol (OP; 1 pM, 1 nM, 1 $\mu$M, 1 mM, respectively) for 48 hours. After culture, total cell number and viability were assessed by heamocyto-meter and trypan blue stain. Expression of cytochrome P450scc (CYPscc) mRNA whose product is involved in steroid hormone biosynthesis and estrogen receptor $\alpha$(ER $\alpha$) mRNA were detected by RT-PCR. As a result, treatment of TM3 with E$_2$, BP and OP(1 mM, respectively) significantly decreased the viability but not all of groups as high as 1 $\mu$M. Exposure of TM3 to OP significantly reduced the total cell number but not E$_2$ or BP. The expression of CYPscc mRNA was slightly reduced in BP (1 nM, 1 $\mu$M) and significantly decreased in OP (1 nM, 1 $\mu$M) treated TM3, except E$_2$ group. But the expression of ER $\alpha$ mRNA was sightly increased in all treated groups. In conclusion, BP and OP (high concentration) might inhibit steroidogenesis by decreasing the CYPscc mRNA expression in the mouse testis. These results suggest that BP and OP might impair spermatogenesis and subsequently disturb testicular function.

  • PDF

Effect of Probiotics on Risk Factors for Human Disease: A Review (인간 질병의 위험 요인에 대한 Probiotics의 효과: 총설)

  • Chon, Jung-Whan;Kim, Dong-Hyeon;Kim, Hyun-Sook;Kim, Hong-Seok;Hwang, Dae-Geun;Song, Kwang-Young;Yim, Jin-Hyuk;Choi, Dasom;Lim, Jong-Soo;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.17-29
    • /
    • 2014
  • GRAS probiotics can be used to modulate intestinal microbiota and to alleviate various gastrointestinal disorders. In several recent studies, researchers have explored the potential expansion and usability of probiotics to reduce the risk factors associated with diseases, including obesity, hypercholesterolemia, arterial hypertension, hyperhomocysteinemia, and oxidative stress. In this review, our aim was to clarify the mechanism underlying interactions between hosts (animal or human) and probiotics and the beneficial effects of probiotics on human health.

  • PDF

Effects of high-fat diet induced obesity on tissue zinc concentrations and zinc transporter expressions in mice (고지방식이로 유도한 비만이 마우스의 조직 아연 농도와 아연수송체 발현에 미치는 영향)

  • Min, Byulchorong;Chung, Jayong
    • Journal of Nutrition and Health
    • /
    • v.51 no.6
    • /
    • pp.489-497
    • /
    • 2018
  • Purpose: Obesity is often associated with disturbances in the mineral metabolism. The purpose of this study was to investigate the effects of high-fat diet-induced obesity on tissue zinc concentrations and zinc transporter expressions in mice. Methods: C57BL/6J male mice were fed either a control diet (10% energy from fat, control group) or a high-fat diet (45% energy from fat, obese group) for 15 weeks. The zinc concentrations in the serum, stool, and various tissues were measured by inductively coupled plasma (ICP)-atomic emission spectrophotometry or ICP-mass spectrophotometry. The levels of zinc transporter mRNAs in the liver, duodenum, and pancreas were measured by real-time RT-PCR. The levels of serum adipokines, such as leptin and IL-6, were determined. Results: The total body weight, adipose tissue weight, and hepatic TG and cholesterol concentrations were significantly higher in the obese group, as compared to the control group. The obese group had significantly higher levels of serum leptin and pro-inflammatory IL-6 concentrations, and had significantly lower levels of serum alkaline phosphatase activity. The zinc concentrations of the liver, kidney, duodenum, and pancreas were all significantly lower in the obese group than in the control group. On the other hand, the fecal zinc concentrations were significantly higher in the obese group than in the control group. The serum zinc concentrations were not significantly different between the two groups. The ZnT1 mRNA levels of the liver and the pancreas were significantly higher in the obese group, as compared to the control group. Hepatic Zip10 mRNA was also increased in the obese group. Conclusion: Our study findings suggest that obesity increases fecal zinc excretion and lowers the tissue zinc concentrations, which may be associated with alterations in the zinc transporter expressions.