• Title/Summary/Keyword: 체결하중

Search Result 192, Processing Time 0.02 seconds

Effects of implant collar design on marginal bone and soft tissue (임플란트의 collar design이 변연골과 연조직에 미치는 영향)

  • Yoo, Hyun-Sang;Kang, Sun-Nyo;Jeong, Chang-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the effects of implant collar design on marginal bone change and soft tissue response by an animal test. Materials and methods: Two types of Implant (Neobiotech Co. Seoul, Korea) that only differs in collar design were planted on two healthy Beagle dogs. The implants were divided into two groups, the first group with a beveled collar (Bevel Group) and the second group with "S" shaped collar (Bioseal group). Standardized intraoral radiographs were used to investigate the mesio-distal change of the marginal bone. Histological analysis was done to evaluate the bucco-lingual marginal bone resorption and the soft tissue response adjacent to the implant. Mann-Whitney test was done to compare the mesio-distal marginal bone change at equivalent time for taking the radiographs and the tissue measurements between the groups. Results: Radiographic and histological analysis showed that there was no difference in marginal bone change between the two groups (P>.05). Histological analysis showed Bioseal group had more rigid connective tissue attachment than the Bevel group. There was no difference in biological width (P>.05). Bevel group showed significantly longer junctional epithelium attachment and Bioseal group showed longer connective tissue attachment (P<.05). Conclusion: For three months there were no differences in marginal bone change between the Bevel group and the Bioseal group. As for the soft tissue adjacent to the implant, Bioseal group showed longer connective tissue attachment while showing shorter junctional epithelium attachment. There were no differences in biologic width.

Influence of crestal module design on marginal bone stress around dental implant (임플란트 경부 디자인이 변연골 응력에 미치는 영향)

  • Lim, Jung-Yoel;Cho, Jin-Hyun;Jo, Kwang-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.3
    • /
    • pp.224-231
    • /
    • 2010
  • Purpose: This study was to investigate how the crestal module design could affect the level of marginal bone stress around dental implant. Materials and methods: A submerged implant of 4.1 mm in diameter and 10 mm in length was selected as baseline model (Dentis Co., Daegu,Korea).A total of 5 experimental implants of different crestal modules were designed (Type I model : with microthread at the cervical 3 mm, Type II model : the same thread pattern as Type I but with a trans-gingival module, Type III model: the same thread pattern as the control model but with a trans-gingival module, Type IV model: one piece system with concave transgingival part, Type V model: equipped with beveled platform). Stress analysis was conducted with the use of axisy mmetric finite element modeling scheme. A force of 100 N was applied at 30 degrees from the implant axis. Results: Stress analysis has shown no stress concentration around the marginal bone for the control model. As compared to the control model, the stress levels of 0.2 mm areas away from the recorded implant were slightly lower in Type I and Type IV models, but higher in Type II, Type III and Type V models. As compared to 15.09 MPa around for the control model, the stress levels were 14.78 MPa, 18.39 MPa, 21.11 MPa, 14.63 MPa, 17.88 MPa in the cases of Type I, II, III, IV and V models. Conclusion: From these results, the conclusion was drawn that the microthread and the concavity with either crestal or trans-gingival modules maybe used in standard size dental implants to reduce marginal bone stress.