• 제목/요약/키워드: 청천난류

검색결과 6건 처리시간 0.023초

항공 운항에서의 허용된 위험 법리에 대한 연구 (A Study of the "erlaubtes Risiko" in Aviation)

  • 함세훈
    • 항공우주정책ㆍ법학회지
    • /
    • 제25권2호
    • /
    • pp.201-230
    • /
    • 2010
  • 자동차, 철도, 광산업이 시작되면서 등장한 새로운 위험에 대하여 사회적 유용성을 이유로 활성화된 세계를 유지하고자 출발한 허용된 법리에 대하여 우리나라의 학계에서는 다수가 인정하고 있는 분위기인데 반하여 판례에서는 아직까지 기존의 과실론 체계로 해석하고 있다. 그러나 첨단 과학기술영역의 하나인 항공 운항에 있어서 사건이나 사고의 원인이 되는 청천난류(CAT)나 요란(turbulence)을 갖고 있는 뇌우는 환자의 불안전한 예후처럼 실시간 완벽한 탐지가 곤란하고 위험 발현 여부와 크기를 확정할 수 없으며 수시로 변화하는 이상 기상 현상이다. 이러한 이유가 있음에도 청천난류(CAT)가 존재할 수 있는 jet 기류의 이용은 시간과 연료를 대폭 절감하고 치명적 위험으로 발현되지 않은 뇌우가 있는 공항으로의 접근 착륙은 승객들의 정시 출 도착을 보장하기에 사회적 유용성이 높은 운항 형태라고 할 수 있다. 위험이 예견되고 회피할 수 있는 방법이 있으나 사회적 유용성을 이유로 개연성이 낮은 청천난류(CAT)나 요란(turbulence) 위험 지역을 운항하다가 발생한 사건이나 사고에 대하여는 허용된 위험의 법리를 적용하여 조종사들의 일정한 주의의무에 대한 완화가 필요하다.

  • PDF

중·상층 항공난류 예측모델의 성능 평가와 개선 (Performance Evaluation and Improvement of Operational Aviation Turbulence Prediction Model for Middle- and Upper- Levels)

  • 강유정;최희욱;최유나;이상삼;황혜원;이혁제;이용희
    • 한국항공운항학회지
    • /
    • 제31권3호
    • /
    • pp.30-41
    • /
    • 2023
  • Aviation turbulence, caused by atmospheric eddies, is a disruptive phenomenon that leads to abrupt aircraft movements during flight. To minimize the damages caused by such aviation turbulence, the Aviation Meteorological Office provides turbulence information through the Korea aviation Turbulence Guidance (KTG) and the Global-Korean aviation Turbulence Guidance (GKTG). In this study, we evaluated the performance of the KTG and GKTG models by comparing the in-situ EDR observation data and the generated aviation turbulence prediction data collected from the mid-level Korean Peninsula region from January 2019 to December 2021. Through objective validation, we confirmed the level of prediction performance and proposed improvement measures based on it. As a result of the improvements, the KTG model showed minimal difference in performance before and after the changes, while the GKTG model exhibited an increase of TSS after the improvements.

한국의 청천난류 예보 시스템에 대한 연구 Part I: 한국형 통합 난류 예측 알고리즘 (A Study of Forecast System for Clear-Air Turbulence in Korea Part I: Korean Integrated Turbulence Forecasting Algorithm (KITFA))

  • 장욱;전혜영;김정훈
    • 대기
    • /
    • 제19권3호
    • /
    • pp.255-268
    • /
    • 2009
  • Based on the pilot reports (PIREPs) collected in South Korea from 2003 to 2008 and corresponding Regional Data Assimilation and Prediction System (RDAPS) analysis data of 30 km resolution, we validate the Korean Integrated Turbulence Forecasting Algorithm (KITFA) system that predicts clear-air turbulence (CAT) above the Korean peninsula. The CATs considered in this study are the upper level (higher than 20000 ft) turbulence excluding convectively induced turbulences. In the KITFA system, there are two main processes for predicting CATs: to select CAT indices and to determine their weighting scores. With the PIREPs observed for much longer period than those used in the current operational version of the KITFA system (March 4-April 8 of 2002), three improvable processes of the current KITFA system, re-calculation of weighting scores, change of method to calculate weighting scores, and re-selection of CAT indices, are tested. The largest increase of predictability is presented when CAT indices are selected by using longer PIREP data, with the minor change using different methods in calculation of weighting scores. The predictability is the largest in wintertime, and it is likely due to that most CAT indices are related to the jet stream that is strongest in wintertime. This result suggests that selecting proper CAT indices and calculating their weighting scores based on the longer PIREPs used in this study are required to improve the current KITFA.

한국에서 발생한 청천난류 사례들에 대한 수치연구 (A Numerical Study on Clear-Air Turbulence Events Occurred over South Korea)

  • 민재식;김정훈;전혜영
    • 대기
    • /
    • 제22권3호
    • /
    • pp.321-330
    • /
    • 2012
  • Generation mechanisms of the three moderate-or-greater (MOG)-level clear-air turbulence (CAT) encounters over South Korea are investigated using the Weather Research and Forecasting (WRF) model. The cases are selected among the MOG-level CAT events occurred in Korea during 2002-2008 that are categorized into three different generation mechanisms (upper-level front and jet stream, anticyclonic flow, and mountain waves) in the previous study by Min et al. For the case at 0127 UTC 18 Jun 2003, strong vertical wind shear (0.025 $s^{-1}$) generates shearing instabilities below the enhanced upper-level jet core of the maximum wind speed exceeding 50 m $s^{-1}$, and it induces turbulence near the observed CAT event over mid Korea. For the case at 2330 UTC 22 Nov 2006, areas of the inertia instability represented by the negative absolute vorticity are formed in the anticyclonically sheared side of the jet stream, and turbulence is activated near the observed CAT event over southwest of Korea. For the case at 0450 UTC 16 Feb 2003, vertically propagating mountain waves locally trigger shearing instability (Ri < 0.25) near the area where the background Richardson number is sufficiently small (0.25 < Ri < 1), and it induces turbulence near the observed CAT over the Eastern mountainous region of South Korea.

한국에서 발생한 청천난류 사례에서 나타나는 종관규모 대기상태에 대한 연구 (An Investigation of Synoptic Condition for Clear-Air Turbulence (CAT) Events Occurred over South Korea)

  • 민재식;전혜영;김정훈
    • 대기
    • /
    • 제21권1호
    • /
    • pp.69-83
    • /
    • 2011
  • The synoptic condition of clear-air turbulence (CAT) events occurred over South Korea is investigated, using the Regional Data Assimilation and Prediction System (RDAPS) data obtained from the Korea Meteorological Agency (KMA) and pilot reports (PIREPs) collected by Korea Aviation Meteorological Agency (KAMA) from 1 Dec. 2003 to 30 Nov. 2008. Throughout the years, strong subtropical jet stream exists over the South Korea, and the CAT events frequently occur in the upper-level frontal zone and subtropical jet stream regions where strong vertical wind shears locate. The probability of the moderate or greater (MOG)-level turbulence occurrence is higher in wintertime than in summertime, and high probability region is shifted northward across the jet stream in wintertime. We categorize the CAT events into three types according to their generation mechanisms: i) upper-level front and jet stream, ii) anticyclonically sheared and curved flows, and iii) breaking of mountain waves. Among 240 MOG-level CAT events reported during 2003-2008, 103 cases are related to jet stream while 73 cases and 25 cases are related to the anticyclonic shear flow and breaking of mountain wave, respectively.

한국의 청천난류 예보 시스템에 대한 연구 Part II: Graphical Turbulence Guidance (GTG) 시스템 (A Study of Forecast System for Clear-Air Turbulence in Korea, Part II: Graphical Turbulence Guidance (GTG) System)

  • 김정훈;전혜영;장욱
    • 대기
    • /
    • 제19권3호
    • /
    • pp.269-287
    • /
    • 2009
  • CAT (clear-air turbulence) forecasting algorithm, the Graphical Turbulence Guidance (GTG) system developed at NCAR (national center for atmospheric research), is evaluated with available observations (e.g., pilot reports; PIREPs) reported in South Korea during the recent 5 years (2003-2008, excluding 2005). The GTG system includes several steps. First, 44 CAT indices are calculated in the domain of the Regional Data Assimilation and Prediction System (RDAPS) analysis data with 30 km horizontal grid spacing provided by KMA (Korean Meteorological Administration). Second, 10 indices that performed ten best forecasting scores are selected. Finally, 10 indices are combined by measuring the score based on the probability of detection, which is calculated using PIREPs exclusively of moderate-or-greater intensity. In order to investigate the best performance of the GTG system in Korea, various statistical examinations and sensitivity tests of the GTG system are performed by yearly and seasonally classified PIREPs. Performances of the GTG system based on yearly distributed PIREPs have annual variations because the compositions of indices are different from each year. Seasonal forecasting is generally better than yearly forecasting, because selected CAT indices in each season represent meteorological condition much more properly than applying the selected CAT indices to all seasons. Wintertime forecasting is the best among the four seasonal forecastings. This is likely due to that the GTG system consists of many CAT indices related to the jet stream, and turbulence associated with the jet stream can be activated mostly in wintertime under strong jet magnitude. On the other hand, summertime forecasting skill is much less than other seasons. Compared with current operational CAT prediction system (KITFA; Korean Integrated Turbulence Forecasting System), overall performance of the GTG system is better when CAT indices are selected seasonally.