• Title/Summary/Keyword: 청정연료

Search Result 359, Processing Time 0.022 seconds

Coal gasification with High Temperature Steam (고온(高溫) 수증기(水蒸氣)를 이용한 석탄(石炭) 가스화)

  • Yun, Jin-Han;Kim, Woo-Hyun;Keel, Sang-In;Min, Tai-Jin;Roh, Seon-Ah
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.28-33
    • /
    • 2007
  • Coal is the most abundant energy source and deposited in every area of world. Combustion process with lower efficiency has been mainly used. Therefore, implementation of more efficient technologies, involving gasification, combined cycles and fuel cells, would be a key issue in the plans for more efficient power generation. In these technologies, gasification has been studied for decades. However, coal gasification to high value combustible gas such as hydrogen and carbon monoxide is focused again due to high oil price. The gaseous product, called syngas, can be effectively utilized in a variety of ways ranging from electricity production to chemical industry (as feedstock). In this study, coal gasification with ultra high temperature steam has been performed. The effect of steam/carbon ratio on the produced gas concentrations, gasification rate and additional products like tar, ammonia and cyan compounds has been determined.

Analysis of Performance and Energy Saving of a SOFC-Based Hybrid Desiccant Cooling System (건물용 연료전지 기반 하이브리드 제습냉방시스템 성능 및 에너지 절감 분석)

  • IN, JUNGHYUN;LEE, YULHO;KANG, SANGGYU;PARK, SUNGJIN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.2
    • /
    • pp.136-146
    • /
    • 2019
  • A solid oxide fuel cell (SOFC) based hybrid desiccant cooling system model is developed to study the effect of fuel utilization rate of the SOFC on the reduction of energy consumption and $CO_2$ emission. The SOFC-based hybrid desiccant cooling system consists of an SOFC system and a Hybrid desiccant cooling system (HDCS). The SOFC system includes a stack and balance of plant (BOP), and HDCS. The HDCS consists of desiccant rotor, indirect evaporative cooler, electric heat pump (EHP), and heat exchangers. In this study, using energy load data of a commercial office building and SOFC-based HDCS model, the amount of ton of oil equivalent (TOE) and ton of $CO_2$ ($tCO_2$) are calculated and compared with the TOE and $tCO_2$ generation of the EHP using grid electricity.

Ammonia Combustion Characteristics and Technology Development Trend (암모니아 연소 특성 및 기술개발 동향)

  • Min Jung Lee;Yusung Kim;Chaewoon Ma;Junhee Bae;Chanbin Yeom
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.11-18
    • /
    • 2023
  • This study explained the need for ammonia fuel and the value chain as a hydrogen carrier. The basic concept of ammonia combustion characteristics and the development of flame stability and low NOx combustion technology were introduced. In addition, through the trend of ammonia combustion technology, the characteristics of ammonia combustion technology in the power generation and industrial sectors were examined, and the author's opinions were included. Through this paper, the author intends to give some overview of basic knowledge about ammonia fuel and its future development direction and meaning.

A study on the characteristics of fuel performance according to the oxygenated additive type for gasoline fuel Part 2. Exhaust and Non-regulated, PM emission characteristics (휘발유 연료용 함산소 첨가제 종류에 따른 성능 특성 연구 Part 2. 배출가스 및 미규제 물질, 입자상 물질 특성)

  • Lee, Min-Ho;Kim, Ki-Ho;Ha, Jong-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.374-384
    • /
    • 2016
  • Concern about air pollution is gradually rising up in domestic and foreign, automotive and fuel researchers are trying to reduce vehicle exhaust emissions, through a lot of approaches, which consist of new engine design and innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research is proceeding by two main issues : exhaust emissions and PM particle emissions of gasoline vehicle. Exhaust emissions, non-regulated emissions and PM (particulate matter) particles of automotive are causing many problems which ambient pollution and harmful effects on the human body. The main particulate fraction of automotive exhaust emissions consists of small particles. Because of their small size, inhaled particles can easily penetrate deep into the lungs. The rough surfaces of these particles make it easier for them to combine with other toxins in the environment. Thus, the hazards of particle inhalation are increased. Based on the oxygenated fuel additive types (MTBE, Bio-ETBE, Bio-ethanol, Bio-butanol), this paper discussed the influence of oxygen contents on gasoline vehicle exhaust emissions, non-regulated emissions and nano-particle emissions. Also, this paper assessed exhaust emission characteristics at 2 type test modes. The test modes were FTP-75 and HWFET. All measurement items be verified less than the value of regulated emissions. It could be known difference increase and decrease by each measurement item depending on increase the oxygen contents.

Comparing Exhaust Gas Emission and PN in LPG and CNG Vehicle under FTP-75 and WLTC Test Mode (FTP-75, WLTC 시험 모드에서 LPG, CNG 자동차의 배출가스 및 PN 비교)

  • Jang, Jinyoung;Lee, Youngjae;Kwon, Ohseok;Kim, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.9-15
    • /
    • 2016
  • Liquefied petroleum gas (LPG) and compressed natural gas (CNG) are often used as fuel for vehicles because they are clean alternative gas fuels. CNG, as a low-carbon fuel, can contribute to the reduction of greenhouse gas emissions. LPG is often used as fuel for taxis because the performance is almost the same as that of gasoline but the price is lower. In the present study, the exhaust gas and the particle number (PN) of particulate matter, which is a recent environmental issue, were compared between LPG and CNG for the same vehicle. A chassis dynamometer was used to conduct the test according to the Federal Test Procedure (FTP)-75 and Worldwide harmonized Light-duty vehicle Test Procedure (WLTC) modes. The PN values of discharged particles having sizes of 5 nm or larger and 23 nm or larger were measured using two condensation particle counters (CPC). The ratio of carbon dioxide was high in the exhaust gas from the LPG vehicle; the ratio of methane was high in the exhaust gas from the CNG vehicle. The PN values of the emitted particles from the two fuels were similar. The PN values of particles having sizes of 23 nm or smaller were high in the high-speed WLTC mode.

Analysis of the abroad and domestic research trends on climate change and its economical effect on the power plant (기후변화협약 시행에 따른 대응 방안 및 발전분야 영향 분석)

  • Woo, Kwangje;Hwang, Jae Dong;Jeong, Seok Yong;Jang, Gil Hong
    • Clean Technology
    • /
    • v.7 no.1
    • /
    • pp.43-49
    • /
    • 2001
  • To meet $CO_2$ emission regulation, this study describes the present state of $CO_2$ reduction technology and the effect of the regulation on power industry. In Japan, R&D investment is actively continuing through a long-term R&D project, along with trying to meet the reduction demand by the ways of energy saving and abroad business. EU has made a lot of investments in increasing the efficiency of power generation and developing alternative energy sources. The US is making provision of the portion of reduction by using energy saving program and emission trading, and the current DOE-driven program is addressing the development of cost-effective power systems. In the country, the research to reduce $CO_2$ emission has been mainly driven by the government and research institute supported by the government. Meanwhile, if the reduction obligation imposed on Portugal which is the least strict condition will be enforced in Korea, it is likely that about 50 running power plants should be stopped or shut down after 2015, in spite of voluntary reduction efforts such as conversion to clean fuels, etc. according to the government's long-term electric power need and supply plan.

  • PDF

Development of Quantitative Analysis Methodology on Environmental Effect through Adaptation of Advanced Safety Vehicle (첨단차량 도입 시를 고려한 환경적 효과의 정량적 분석 방법론 개발)

  • Choi, Ji-Eun;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.6
    • /
    • pp.94-104
    • /
    • 2010
  • The capacity of highway is restricted and traffic congestion is caused by increasing traffic demand. Also, greenhouse gases are increased by traffic congestion. CDM (Clean Development Mechanism) is an idea of interest to reduce greenhouse gases. However, CDM's cases applied in traffic field are rare. Thus, it is necessary that methodology to reduce greenhouse gas should be developed and applied to CDM. A methodology for identifying greenhouse gas emissions was developed in this paper. This methodology was developed on the basis of baseline methodology registered at UN. Travel time and speed in the conventional traffic condition and in the automated traffic condition are compared by BPR function. The calculated speed applied to emission factor equation and then $CO_2$ emissions was calculated. A simulation was executed to evaluate the validity of the developed methodology. In the result, advanced vehicle's $CO_2$ emissions are more than conventional vehicle's $CO_2$ emissions in the stable flow condition. However, advanced vehicle's $CO_2$ emissions are less than conventional vehicle's $CO_2$ emissions in the unstable flow condition. It is assure that capacity of highway is enhanced and efficiency of highway is improved by adopting advanced safety vehicle in the smart road.

Research Trends of Ni-based Catalysts on Steam Reforming of Bio-oils for H2 Production: A Review (수소 생산을 위한 바이오오일 수증기 개질 반응에서의 니켈계 촉매 연구동향)

  • Da Hae Lee;Hyeon Myeong Seo;Yun Ha Song;Jaekyoung Lee
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.163-171
    • /
    • 2023
  • Hydrogen has been gaining a lot of attention as a possible clean energy source that can aid in reaching carbon neutrality. Currently, hydrogen production has relied on the steam reforming of fossil fuels. However, due to the carbon dioxide emissions caused by this process, hydrogen production based on the steam reforming of bio-oil derived from biomass has been proposed as an alternative approach. In order to use this alternative approach efficiently, one of the key issues that must be overcome is that the complexity of bio-oil, which has a large molecular weight and diverse functional groups of hydrocarbons, promotes the catalytic deactivation of nickel-based catalysts. In this review, research efforts to improve nickel-based catalysts for the steam reforming of bio-oil have been discussed in terms of the active phase, support, and promoters. The active phases are involved in activating C-C and C-H bonds of high-molecular-weight hydrocarbons, and noble and transition metals can be utilized. In terms of the support and promoters, the catalytic deactivation of Ni-based catalysts can be inhibited by utilizing reactive lattice oxygen for support or by suppressing the acidity. The development of active and stable Ni-based reforming catalysts plays a critical role in clean hydrogen production based on bio-oils.

Dehydration Reaction of Fructose to 5-Hydroxymethylfurfural over Various Keggin-type Heteropolyacids (Keggin형 헤테로폴리산에 의한 과당의 5-하이드록시메틸퍼퓨랄로의 전환을 위한 탈수반응)

  • Baek, Ja-Yeon;Yun, Hyeong-Jin;Kim, Nam-Dong;Choi, Young-Bo;Yi, Jong-Heop
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.220-228
    • /
    • 2010
  • Four Keggin-type heteropolyacids, $H_nXM_{12}O_{40}$(X = P and Si, M = W and Mo) that were substituted with heteroatom and polyatom were applied to the dehydration reaction of fructose to 5-hydroxymethylfurfural (HMF). The results showed that the acid became stronger when the heteroatom and polyatom were substituted with P and W than the cases of Si and Mo, respectively. However, the amount of acidic sites increased with the decrease in the acid strength, resulting in the change of the catalytic activity of heteropolyacids in the dehydration reaction. The experimental results revealed that four different heteropolyacids produced similar amounts of HMF via the dehydration reaction of fructose due to the counterbalancing effect between the amount of active sites, which is related to the catalytic activity of heteropolyacids, and the softness of polyanion. In addition, it was observed that the prepared heteropolyacids showed good structural stability after heat treatment at $200^{\circ}C$.

A Study of 2 Case IGCC System (2 Case IGCC 시스템 연구)

  • 김종진;서석빈;이윤경;안달홍
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.39-44
    • /
    • 2000
  • 석탄가스화 복합발전(IGCC; Integrated Gasification Combined Cycle) 은 석탄을 연료로 사용하면서 NOx, SOx 등 오염물 발생량이 적고 가스터빈을 채용한 복합발전 방식으로 효율이 높은 청정에너지 발전방식이다. 특히 우리나라와 같이 전력생산 분야에서 석탄화력의 비중이 높은('99년 6월 현재 27.8%(한전통계자료)) 우리나라에서 급격히 강화되는 석탄화력발전소에 대한 오염물 배출량 제한에 대처하기 위해 기존 석탄화력의 대안으로써 석탄가스화 복합발전이 부각되고 있다. 본 연구에서 국내에 IGCC 상용설비 도입에 대비하여 참조플랜트로서 Texaco 가스화공정을 채용한 2 case의 IGCC 시스템 연구를 수행하였다.(중략)

  • PDF