• Title/Summary/Keyword: 청정수소

Search Result 274, Processing Time 0.021 seconds

Optimization of KOGAS DME Process From Demonstration Long-Term Test (KOGAS DME 공정의 실증 시험을 통한 최적화 기술개발)

  • Chung, Jongtae;Cho, Wonjun;Baek, Youngsoon;Lee, Changha
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.559-571
    • /
    • 2012
  • Dimethyl ether (DME) is a new clean fuel as an environmentally-benign energy resource. DME can be manufactured from various energy sources including natural gas, coal, and biomass. In addition to its environmentally friendly properties, DME has similar characteristics to those of LPG. The aim of this article is to represent the development of new DME process with KOGAS's own technologies. KOGAS has investigated and developed new innovative DME synthesis process from synthesis gas in gaseous phase fixed bed reactor. DME has been traditionally produced by the dehydration of methanol which is produced from syngas, a product of natural gas reforming. This traditional process is thus called the two-step method of preparing DME. However, DME can also be manufactured directly from syngas (single-step). The single-step method needs only one reactor for the synthesis of DME, instead of two for the two-step process. It can also alleviate the thermodynamic limitations associated with the synthesis of methanol, by converting the produced methanol into DME, thereby potentially enhancing the overall conversion of syngas into DME. KOGAS had launched the 10 ton/day DME demonstration plant project in 2004 at Incheon KOGAS LNG terminal. In the mid of 2008, KOGAS had finished the construction of this plant and has successively finished the demonstration plant operation. And since 2008, we have established the basic design of commercial plant which can produce 3,000 ton/day DME.

Analysis of Performance and Energy Saving of a SOFC-Based Hybrid Desiccant Cooling System (건물용 연료전지 기반 하이브리드 제습냉방시스템 성능 및 에너지 절감 분석)

  • IN, JUNGHYUN;LEE, YULHO;KANG, SANGGYU;PARK, SUNGJIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.136-146
    • /
    • 2019
  • A solid oxide fuel cell (SOFC) based hybrid desiccant cooling system model is developed to study the effect of fuel utilization rate of the SOFC on the reduction of energy consumption and $CO_2$ emission. The SOFC-based hybrid desiccant cooling system consists of an SOFC system and a Hybrid desiccant cooling system (HDCS). The SOFC system includes a stack and balance of plant (BOP), and HDCS. The HDCS consists of desiccant rotor, indirect evaporative cooler, electric heat pump (EHP), and heat exchangers. In this study, using energy load data of a commercial office building and SOFC-based HDCS model, the amount of ton of oil equivalent (TOE) and ton of $CO_2$ ($tCO_2$) are calculated and compared with the TOE and $tCO_2$ generation of the EHP using grid electricity.

Economic and Environmental Sustainability Assessment of Livestock Manure Gasification for Fuel Gas Production (축분 가스화를 통한 연료가스 생산 공정의 경제적, 환경적 지속가능성 평가)

  • Ji Hong Moon;Kyung Hwan Ryu
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.291-298
    • /
    • 2023
  • This research evaluates the sustainability of gasifying livestock manure to produce fuel gas from an economic and carbon emission perspective. The entire process, including gasification, fuel gas purification, and pipeline installation to transport the produced fuel gas to the demanding industrial complex, is analyzed for realistic feasibility. The study is conducted using an ASPEN PLUS simulation with experimental data. The results of the economic and CO2 life cycle assessments confirm that the fuel gas produced from livestock manure is competitive with natural gas despite having a lower calorific value. When used as a fuel with a high hydrogen content, the fuel gas emits less CO2 per calorific value, making it more environmentally friendly. A scenario analysis is also performed to determine the expected economics, with price competitiveness being influenced by several factors. Although a significant decrease in natural gas prices could reduce the price competitiveness of the proposed process, it can still be supported by government policies. The cash flow analysis also confirms the economic viability of the process.

Time-Dependent Modeling of Performance Degradation for PEMFC Single Cell System to Evaluate the Cell Performance and Durability: Effects of CO Poisoning (고분자전해질 연료전지의 성능과 안정성 시험을 위한 단위전지의 시간 경과에 따른 모델링: 일산화탄소 피독현상에 의한 효과)

  • Kim, Jong-Sik;Kim, Pil;Joo, Ji-Bong;Kim, Woo-Young;Yi, Jong-Heop
    • Clean Technology
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2008
  • There have been great attentions on polymer electrolyte membrane fuel cell (PEMFC) due to their advantageous characteristics such as zero emission of hazardous pollutant and high energy density. In this work, we evaluated degradation phenomena and stability of single cell performance via one dimensional single cell modeling. Here, CO poisoning on anode on anode was considered for cell performance degradation. Modeling results showed that the performance and stability were highly degraded with CO concentration in fuel gas. In addition, cell performance was reduced by slow oxygen reduction on cathode in long term operation. In order to overcome, it is required to increase ratio o#hydrogen in the fuel gas of anode and high Pt loading contained in the cathodic catalyst layer.

  • PDF

Preparation and Characterization of $Cu/Ce_xZr_{1-x}O_2$ Catalysts for Preferential Oxidation of Carbon Monoxide (일산화탄소의 선택적 산화반응을 위한 $Cu/Ce_xZr_{1-x}O_2$ 촉매의 합성과 특성분석)

  • Lee, So-Yeon;Lee, Suk-Hee;Cheon, Jae-Kee;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.54-63
    • /
    • 2007
  • Even traces of CO in the hydrogen-rich feed gas to proton exchange membrane fuel cells (PEMFC) poison the platinum anode electrode and dramatically decrease the power output. In this work, a variety of catalytic materials consisting of $Cu/Ce_xZr_{1-x}O_2$, (x = 0.0-1.0) were synthesised, characterized and tested for CO oxidation and preferential oxidation of CO (PROX). These catalysts prepared by hydrothermal and deposition-precipitation methods. The catalysts were characterized by XRD, XRF, SEM, BET, $N_2O$ titration and oxygen storage capacity (OSC) measurement. The effects of composition of the support and degree of excess oxygen were investigated fur activity and $CO_2$ selectivity with different temperatures. The composition of the support markedly influenced the PROX activity. Among the various $Cu/Ce_xZr_{1-x}O_2$ catalysts having different composition, $Cu/Ce_{0.9}Zr_{0.1}O_2$ and $Cu/Ce_{0.7}Zr_{0.3}O_2$ showed the highest activities (>99%) and selectivities (ca.50%) in the temperature range of $150{\sim}160^{\circ}C$. It was found that by using of $Ce_xZr_{1-x}O_2$ mixed oxide support which possesses a high oxygen storage capacity, oxidation-reduction activity of Cu-based catalyst was improved, which resulted in the increase of catalytic activity and selectivity of CO oxidation in excess $H_2$ environments.

  • PDF

Applications of Ionic Liquids: The State of Arts (이온성액체의 응용기술 동향)

  • Lee, Hyunjoo;Lee, Je Seung;Kim, Hoon Sik
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • Ionic liquids are expanding their applications in various fields of chemistry, due to their unique properties such as negligible volatility, immisciblity with hydrocarbons, high electrical conductivity, and tunable acidity and basicity. In this paper, the physical properties, synthesis, and commercial applications of ionic liquids are discussed. Recent research trends are also briefly reviewed, particularly on application of ionic liquids to catalysis, biomass, and $CO_{2}$ capture and utilization.

A clean technology development using the molybdenum dissolution reaction with hydrogen peroxide(II) (과산화수소를 이용한 몰리브덴(Mo) 용해반응에 따른 청정기술 개발에 관한 연구(II))

  • 김재우;홍종순;신대윤
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.116-122
    • /
    • 1999
  • The purpose of this study is to develop new process named "hydrogen peroxide dissolution method". This process used hydrogen peroxide, which is harmless to human body and oxidize molybdenum wire selectively.The advantages of hydrogen peroxide dissolution method were no discharge of noxious matter when dissolution of molybdenum wire which used as the center supporter, reactions occur in room temperature and easy to recover dissolved molybdenum. This study was aimed at gathering the basic data of molybdenum wire dissolution-recovery process and proposes the reaction condition of molybdenum wire dissolution-recovery process and the factors influencing those reactions. The results were as follows:1. In the dissolution of molybdenum wire, the early condition of reaction was $15^{\circ}C$, and the temperature condition of state was $32^{\circ}C$. 2. 1) In the GSL-60W type, P.W.(Piece weight) was 11.89mg, C.R. was $65.6\Omega$. 2) In the FL-20W type, P.W. was 11.60mg, C.R. was $4.6\Omega$. 3. The molybdenum of process water was treated of a precipitation after dry and after stagnation in the one day, the molybdenum of upper water was treated of precipitation after dry and after congelation.

  • PDF

Applications of Renewable Energy for Railway System (국내외 철도 시스템의 신재생에너지 적용현황)

  • Park, Haneol;Kim, Duk-Hyun;Kim, Dae-Nyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.135.1-135.1
    • /
    • 2011
  • 철도 선진국을 중심으로 신재생에너지의 철도 시스템 적용이 가속화 되고 있고, 국내에서도 철도 시스템에 신재생에너지를 적용하려는 시도가 이루어지고 있다. 이미 상당수의 신규 역사가 BIPV(building integrated photovoltaic) 시스템을 적용하고 있고, 단순히 유휴지를 이용한 풍력 발전 시스템을 넘어서 차량의 주행풍을 이용하거나 차량 외부에 풍력 발전기를 설치하는 등의 다양한 시도들이 이루어지고 있다. 수소 에너지를 연료로 하는 연로전지의 경우 기존 전기철도의 대체 연료로서 주목을 받으며 많은 연구가 이루어졌고 현재는 시험 운전 단계에 이르러 있다. 지열의 경우에는 벌써 오래전부터 승강장 또는 선로의 해빙장치의 에너지원으로 사용 되고 있다. 이밖에 수력 및 해양 에너지의 경우 전철전력의 청정 에너지 공급원으로 보고되고 있으며, 차량이나 역사 내에서 발생하는 운동 에너지를 수확하여 전기 에너지로 변환하는 에너지 하베스팅 기술이 새로운 신재생에너지 기술로서 많은 관심을 받고 있다. 에너지 문제와 온실가스 감축 의무 부담이 날로 가중되는 현 시점에서 신재생에너지의 전기철도 시스템 적용은 이 같은 문제를 해결할 수 있는 확실한 대안이 될 것이다. 본 논문에서는 국내외 전기철도 시스템의 신재생에너지 적용 기술과 적용 방안에 대해 고찰한다.

  • PDF

BTL Pilot Process using Fe-based F-T Catalyst (철계 촉매를 이용한 BTL 파일롯 공정 연구)

  • Chae, Ho-Jeong;Jeong, Soon-Yong;Kim, Chul-Ung;Jeong, Kwang-Eun;Koh, Jae-Cheon;Kim, Tae-Wan;Park, Hyun-Joo;Lee, Sang-Bong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.804-806
    • /
    • 2010
  • Due to the depletion of fossil fuel, high oil price and global warming issue by green house gas such as CO2, clean fuel technologies using biomass, especially BTL (biomass to liquid) technology, have been greatly attracted. This paper has examined F-T catalyst and process which are two backbones of BTL technology. In addition, this paper introduces our BTL pilot plant using Fe based catalyst which has been developed recently in Korea.

  • PDF

미세먼지 저감을 위한 충남의 노력과 전략

  • Kim, Yeong-Su
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.4 no.3
    • /
    • pp.36-41
    • /
    • 2018
  • 연일 뉴스에 보도되고 있는 미세먼지는 노약자의 호흡기는 물론 발암물질을 포함하고 있어 국민건강에 악영향을 미치기 때문에 반드시 해결되어야 할 사회 문제이다. 미세먼지는 해외 유입 인자와 국내 유발인자를 정확하게 구분하기 어려우나 약 50%의 미세먼지는 2차 발생에 의한 국내 요인으로 발생하고 있는 것으로 파악되고 있으며 화력발전소가 미세먼지 유발 물질의 주요 생성원으로 지목되어왔다. 국내 화력발전소의 50%가 충남 서해안이 위치하고 있어 수도권에 가장 큰 영향을 주는 것으로 밝혀져 충남은 내구연한에 도달한 노후 화력발전소의 폐쇄 및 발전량 감축 조절을 통해 미세먼지 발생을 최소화 하기 위해 노력해왔다. 그러나 태양전지 주도의 신재생에너지 발전으로 전환하는 것만이 미세먼지를 저감시킬 근본적인 해결책이라고 할 수 있다. 충남은 2050년까지 화력발전 비중을 0%로 낮추고 필요한 전력은 에너지컨슈머들이 생산하는 신재생에너지로 생산하는 내용을 골자로 하는 에너지 전환비전을 선포하였다. 이 비전이 선언에 그치지 않고 목표를 달성하기 위해서 이에 대한 세부 이행계획을 수립하고 충남에 맞는 태양광 발전 산업 육성을 위한 정책을 병행해야 할 것이다. 이번 글에서는 충남의 여건을 고려하여 태양광을 이용한 수소 생산 및 인공광합성을 연계한 고부가가치 화학물질의 생산 연구 및 실증 과제를 추진할 것을 제안하였다. 이러한 충남의 노력은 수도권 수요 지역에 대한 전력 공급기지에서 친환경에너지로 유지되는 '청정남도'로서의 재도약을 가능하게 할 것으로 기대된다.

  • PDF