• Title/Summary/Keyword: 청염 영역

Search Result 2, Processing Time 0.015 seconds

The Flame Stability and the Emission Characteristics of Turbulent Premixed Flat Burner (난류예혼합 플랫버너의 화염 안정성 및 배출가스 특성)

  • Lee, Y.H.;Lee, J.S.;Lee, D.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.1-8
    • /
    • 2007
  • The purpose of this study is to conduct a survey of the flame stability range and the emission characteristics for the optimum design of turbulent premixed flat burner. For that, the flame stability range was selected by the direct photography of the flame. And the mean temperature and CO, HC, $CO_{2}\;and\;O_{2}$ concentration distributions by changing the excess air ratio were measured. As results of this study, the flame stability range turned out to be getting narrower as fuel flow was increased. The blue flame mode was more excellent than any other flame modes in the emission characteristics by excess air ratio change. And the emission characteristics by fuel flow change were best at fuel flow 1l/min. Also, we found combustion noise during experiment of flame stability range. It had nothing do with excess air ratio range.

  • PDF

A Study on the Temperature Characteristics and Flame Stabilization of Surface Combustor using the Metal Fiber (메탈화이버를 이용한 표면연소기의 화염안정화 및 온도특성에 관한 연구)

  • Lee, Jin-Seok;Lee, Young-Hoo;Yun, Bong-Seok;Lee, Do-Hyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.92-97
    • /
    • 2002
  • By changing the excess air ratio which affects strongly to the combustion characteristics, the flame stability range in the metal fiber burner were found and the range of the blue flame male and radiant mode were distinguished by direct photography. The results in our experiments for the flame stability zone were from a=1.4($354 KW/m^2$) to a=2.06($240 KW/m^2$), and then the blue flame mode zone was form a=1.87($266 KW/m^2$) to a=2.06($240 KW/m^2$) and the radiant mode one was form a=1.4($354 KW/m^2$) to a =1.78($278 KW/m^2$). And the flame was not fired when a is less than the lean condition a=2.45($202 KW/m^2$).

  • PDF