• Title/Summary/Keyword: 첨삭가공

Search Result 3, Processing Time 0.015 seconds

첨삭가공(Additive Manufacturing)의 세계적 추세

  • Yang, Jeong-Sam
    • CDE review
    • /
    • v.16 no.2
    • /
    • pp.25-29
    • /
    • 2010
  • 첨삭가공(Additive Manufacturing: AM) 기술은 제품 개발에 있어서 기념비적인 변화를 야기하고 있다. 첨삭가공에 대한 이해와 더불어 모델링과 시작품 제작에 첨삭 가공을 잘 활용한다면 제품 제조 과정에 상당한 충격을 줄 수 있다. 많은 조직들은 첨삭가공 기술이 비즈니스, 연구 그리고 교육에 있어서 어떠한 기회를 가져올 것인지에 대해 탐색 중에 있다.

  • PDF

Additive Manufacturing of Patient-specific Femur Via 3D Printer Using Computed Tomography Images (CT 영상을 이용한 3D 프린팅으로 환자 맞춤형 대퇴골 첨삭가공)

  • Oh, Wang Kyun;Lim, Ki Seon;Lee, Tea Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.5
    • /
    • pp.359-364
    • /
    • 2013
  • Femur is the largest bone in the human body which supports the weight of body. A long pipeline shape of femur has little cancellous bone, so that regeneration is difficult when fracture happens. The fracture caused by an accident most frequently occurs at diaphysis. IM Nailing is the surgical method that implants an IM Nail into a medullary cavity for the fixation of fracture parts. However, a secondary fracture may happen if an IM Nail does not penetrate at the center of femur. In this study, a patient-specific femur was manufactured by a 3D printer using the computed tomography images scanned before surgery, which was used for the simulation of IM Nailing. It is expected that this result may prevent the secondary damage, reduce surgical operation time, and increase the precision.

Development of a Multi-material Stereolithography System (다중재료 광조형장치 개발)

  • Kim, Ho-Chan;Choi, Jae-Won;Wicker, Ryan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.135-141
    • /
    • 2010
  • Researchers continue to explore possibilities for expanding additive manufacturing (AM) technologies into direct product manufacturing. One limitation is in the materials available for use in AM that can meet the needs of end-use applications. Stereolithography (SL) is an AM technology well known for its precision and high quality surface finish capabilities. SL builds parts by selectively crosslinking or solidifying photo-curable liquid resins, and the resin industry has been continuously developing new resins with improved performance characteristics. This paper introduces a unique SL machine that can fabricate parts out of multiple SL materials. The technology is based on using multiple vats positioned on a rotating vat carousel that contain different photo-curable materials. To change the material during the process, the build platform is raised out of the current vat, a new vat with a different material is rotated under the platform, and the platform is submerged into the new vat so that the new material can be used. This paper introduces a new vat exchange mechanism, cleaning process, recoating process, resin leveling mechanism and process planning technologies for the implementation of multiple material SL. An overview of the system framework is provided and the system integration and control software is described. In addition, several multiple material test parts are designed, fabricated, and described.