• Title/Summary/Keyword: 철 침출

Search Result 121, Processing Time 0.023 seconds

Bio-dissolution of waste of lithium battery industries using mixed acidophilic microorganisms isolated from Dalsung mine (달성 광산(鑛山)에서 채취(採取)한 혼합(混合) 호산성 균주를 이용(利用)한 폐리튬 밧데리의 바이오 침출(浸出))

  • Mishra, Debaraj;Kim, Dong-Jin;Ahn, Jong-Gwan;Ralph, David E.
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.30-35
    • /
    • 2008
  • Mixed acidophilic bacteria were approached for leaching of cobalt and lithium from wastes of lithium ion battery industries. The growth substrates for the mixed mesophilic bacteria are elemental sulfur and ferrous ion. Bioleaching of the metal was due to the protonic action of sulfate ion on the metals present in the waste. It was investigated that bioleaching of cobalt was faster than lithium. Bacterial action could leach out about 80 % of cobalt and 20 % of lithium from the solid wastes within 12 days of the experimental period. Higher solid/liquid ratio was found to be detrimental for bacterial growth due to the toxic nature of the metals. At high elemental sulfur concentration, the sulfur powder was observed to be in undissolved form and hence the leaching rate also decreased with increase of sulfur amount.

Absorption Capacity of Heavy Metals and Harmful Elements of Waste Leachate Using by Fast Growing Trees (속성수를 이용한 쓰레기 매립지 침출수의 중금속 및 유해성분의 흡수, 제거 가능성)

  • 이동섭;우수영;김동근;김판기;권오규;배관호;이은주
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.81-87
    • /
    • 2001
  • Populus euramericana and Betula platyphylla var. japonica have been identified as possible species for use for phytoremediation of landfills. To identify the capacity of waste leachate absorption in Populus euramericana and Betula platyphylla var, japonica, four different treatments were applied to these seedlings: leachate solution (100% leachate), 50% dilution (50% leachate: 50% water, v/v) and 25% dilution (25% leachate: 75% water, v/v) were applied to these two species. After the experiment, concentrations of heavy metals in tree biomass were analyzed by Inductively Coupled Plasma emission spectrometer (ICP). These two species can take up the hazardous parts of the leachate such as heavy metals. Especially, these species showed good absorption capacity of Al, Cr, and Fe elements. The result of this study suggested that these two species can take up the toxic materials through their roots and transport them to stems or leaves.

  • PDF

A Study on Pretreatment and Acid Leaching for Wet Recycling of Waste Industrial Ni-Cd Secondary Battery (산업용 니켈-카드뮴 폐 이차전지 습식 재활용을 위한 전처리 및 산 침출에 대한 연구)

  • Jung, Soo-Hoon;Kim, Dae-Weon;Park, Il-Jeong;Choi, Joong-Yup;Yang, Dae-Hoon;Choi, Hee-Lack
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.67-76
    • /
    • 2017
  • In order to efficiently recycle waste industrial nickel-cadmium batteries, anodic and cathodic materials were crushed by a cut mill and classified by sieves. We used wet magnetic separation method for eliminating iron components from the crushed powders. In addition, the acid leaching test for the obtained anode and cathode powders was carried out under various conditions by means of the wet process. At the optimum leaching conditions with 2.0 M $H_2SO_4$ at $90^{\circ}C$, 15 wt $H_2O_2$ and L/S=20 for 3 hours, the leaching efficiency of nickel and cadmium was 99%, respectively.

Leaching of Molybdenite by Hydrochloric Acid Solution Containing Sodium Chlorate (NaClO3를 함유한 염산용액으로 몰리브데나이트광의 침출)

  • Nguyen, Thi Nhan Hau;Nguyen, Thi Thu Huong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.26-33
    • /
    • 2022
  • Molybdenum is widely used in many materials; thus, its recovery from ores and secondary resources has attracted considerable attention. In this study, the leaching of molybdenite ore using hydrochloric acid containing sodium chlorate as an oxidizing agent was studied. The effects of several variables, such as the concentrations of HCl and NaClO3, reaction temperature and time, and pulp density, on the leaching of the ore were investigated. Under strong acidic and oxidizing conditions, the sulfide in the ore was dissolved as a sulfate ion, which formed gypsum with Ca(II), leading to a decrease in the leaching percentage of Mo(VI) from the ore. The leaching percentage of molybdenum was greater than 90%, while those of iron, calcium, and silicon were 38, 29, and 67%, respectively, under the optimum conditions: 2.0 M HCl, 0.5 M NaClO3, pulp density of 5 g/L, temperature of 90 ℃, and treatment time of 60 min.

Recovery of Pt from the Chloride Leaching Solution of Spent Catalysts by using Column Extractor (폐촉매(廢觸媒) 염산침출액(鹽酸浸出液)에서 컬럼형 추출기(抽出器)에 의한 백금(白金) 회수(回收))

  • Sun, Pan-Pan;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.26-32
    • /
    • 2013
  • In order to recover Pt from the hydrochloric acid leaching solution of spent catalysts, bench scale Karr reciprocating column was employed. At an optimum flow rate and vibration frequency, iron and Pt was completely extracted by using TBP and Aliquat 336. At the same vibration frequency, iron and Pt was completely stripped by HCl and $HClO_4$ after adjusting the flow rate. In the case of extraction of HCl from the raffinate with TEHA, it was difficult to maintain the stability of the column extractor. A comparison of the operation results between column extractor and mixer-settler is reported.

Assessment of Hydrogeochemical Characteristics and Contaminant Dispersion of Aquifer around Keumsan Municipal Landfill (금산 매립장 주변 대수층의 수리지화학적 특성 및 오염 확산 평가)

  • Oh, In-Suk;Ko, Kyung-Seok;Kong, In-Chul;Ku, Min-Ho
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.657-672
    • /
    • 2008
  • The purposes of this study are to investigate the hydrogeochemical characteristics of groundwaters around Keumsan municipal landfill, and to evaluate the contaminant dispersion from the landfill and its environmental impact. To achieve these goals, groundwater quality logging, hydrochemical analysis, multivariate statistical analysis, and contaminant transport modeling were performed. The water quality logging indicated a leaking from the landfill at the depth of 4-12m around a leachate sump. Electrical conductivity data indicated that groundwaters within 70-100m from landfill were affected by the landfill leakage. Principal components 1 and 2 obtained from principal components analysis (PCA) reflect the influence of leachate and the characteristics of aquifer media, respectively. The results of principal component analysis also indicated the natural attenuation processes such as cation exchange, sorption, and microbial biodegradation. The modeling results showed that groundwater flow westward along a valley from the landfill and contaminants transport accordingly.

Hydrogen Sulfide Removal in Full-scale Landfill Gas Using Leachate and Chelated Iron (침출수 및 철킬레이트를 이용한 실규모 매립가스 내 황화수소 제거)

  • Park, Jong-Hun;Kim, Sang-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.51-56
    • /
    • 2019
  • $H_2S$ is a detrimental impurity that must be removed for upgrading biogas to biomethane. This study investigates an economic method to mitigate $H_2S$ content, combining scrubbing and aeration. The desulfurization experiments were performed in a laboratory apparatus using EDTA-Fe or landfill leachate as the catalyst and metered mixture of 50-52% (v/v) $CH_4$, 32-33% (v/v) $CO_2$ and 500-1,000 ppmv $H_2S$ balanced by $N_2$ using the C city landfill gas. Dissolved iron concentration in the liquid medium significantly affected the oxidation efficiency of sulfide. Iron components in landfill leachate, which would be available in a biogas/landfill gas utilization facility, was compatible with an external iron chelate. More than 70% of $H_2S$ was removed in a contact time of 9 seconds at iron levels at or over 28 mM. The scrubbing-aeration process would be a feasible and easy-to-operate technology for biogas purification.

Selective Ni Recovery from Spent Ni-Mo-Based Catalysts (니켈-몰리브데늄 성분계 폐촉매로부터 니켈의 선택적 회수)

  • Lee, Tae Kyo;Han, Gi Bo;Yoon, Suk Hoon;Lee, Tae Jin;Park, No-Kuk;Chang, Won Chul
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.668-673
    • /
    • 2008
  • The objective of this study is to optimize the leaching conditions of sequential leaching and extracting processes for selective Ni recovery from spent Ni-Mo-based catalyst. The selective Ni recovery process consists of two processes of leaching and extracting process. In this 2-step process, Ni component is dissolved from solid spent Ni-Mo-based catalyst into leaching agent in leaching process and sequentially extracted to Ni complex with an extracting agent in the extracting process. The solutions of nitric acid ($HNO_3$), ammonium carbonate ($(NH_4)_2CO_3$) and sodium carbonate ($Na_2CO_3$) were used as a leaching agent in leaching process and oxalic acid was used as an extracting agent in extracting process. $HNO_3$ solution is the most efficient leaching agent among the various leaching agent. Also, the optimized leaching conditions for the efficient and selective Ni recovery were the leaching temperature of $90^{\circ}C,\;HNO_3$ concentration of 6.25 vol% and elapsed time of 3 h. As a result, Nickel oxalate having the highest yield of 88.7% and purity of 100% was obtained after sequentially leaching and extracting processes under the optimized leaching conditions.

A Study on the Prior Leaching and Recovery of Lithium from the Spent LiFePO4 Cathode Powder Using Strong Organic Acid (강유기산을 이용한 폐LiFePO4 양극분말로부터 리튬의 선침출에 대한 연구)

  • Dae-Weon Kim;Soo-Hyun Ban;Hee-Seon Kim;Jun-Mo Ahn
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.105-112
    • /
    • 2024
  • Globally, the demand for electric vehicles has surged due to greenhouse gas regulations related to climate change, leading to an increase in the production of used batteries as a consequence of the battery life issue. This study aims to selectively leach and recover valuable metal lithium from the cathode material of spent LFP (LiFePO4) batteries among lithium-ion batteries. Generally, the use of inorganic acids results in the emission of toxic gases or the generation of large quantities of wastewater, causing environmental issues. To address this, research is being conducted to leach lithium using organic acids and other leaching agents. In this study, selective leaching was performed using the organic acid methane sulfonic acid (MSA, CH3SO3H). Experiments were conducted to determine the optimal conditions for selectively leaching lithium by varying the MSA concentration, pulp density, and hydrogen peroxide dosage. The results of this study showed that lithium was leached at approximately 100%, while iron and phosphorus components were leached at about 1%, verifying the leaching efficiency and the leaching rates of the main components under different variables.

Removal of Trichloroethylene, Cr(VI) and Nitrate in Leachate by Bentonite and Zero Valent Iron (벤토나이트와 영가 철에 의한 침출수 내의 Trichloroethylene, Cr(VI), 질산성질소의 제거)

  • Lee, Hyun-Joo;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.23-31
    • /
    • 2004
  • Trichloroethylene(TCE), Cr(VI), and nitrate removal efficiency of a novel reactive barrier were experimented, and the types of corrosion species that form on the surface of the iron and bentonite as a result of reaction were investigated with Raman spectrophotometer. The reactive barrier is composed of bentonite and zero valent iron(ZVI), and this can substitute conventional geosynthetic clay liners for landfill leachate. Tests were performed in batch reactors for various ZVI content (0, 3, 6, 10, 13, 16, 20, 30, 100 w/w %) and pH. The reduction rates and removal efficiencies of TCE, Cr(VI) and nitrate increase at pH 7 buffered solution. As ZVI content increases, TCE, Cr(VI) and nitrate removal efficiencies increase. From the result of analysis with Raman spectrophotometer, Fe-oxides were observed, which are strong adsorbers of cantaminants. Magnetite can be also beneficial to the long term performance of the iron metal.

  • PDF