• Title/Summary/Keyword: 철제품

Search Result 11, Processing Time 0.016 seconds

A Study on the Procurement of Iron Materials and the Production of Ironwork in Constructions of Royal Tombs in the Later Joseon Period -Focused on Sanneung-uigwes- (조선후기 산릉공역의 철물 조달과 철제품 제작 -산릉의궤를 중심으로-)

  • Lee, Sang-Myeong
    • Journal of architectural history
    • /
    • v.25 no.5
    • /
    • pp.27-40
    • /
    • 2016
  • The purpose of this study was to comprehend the procurement system of iron materials and the production process of ironwork in royal tombs constructions in the later Joseon period. For this purpose, sixteen Sanneung-uigwes were analyzed. The following conclusions have been reached through the study. First, it was procuring five types of iron materials in constructions of royal tombs. Sincheol had been supplied up to the mid-18th century. On the other hand, the amount of jeongcheol was increased rapidly. Because of the procurement system of initial tools was changed from bokjeong(a kind of tribute) to self-production in the Noyaso. Second, the government stockpiles were utilized as much as possible than bokjeong to manage the limited construction period and sudden construction start. Third, before moving the site of tombs, the melting furnace was installed in the Gungisi(armament factory). The amount of the melting furnace was increased from 5 to 8 since producing the initial tools in the Noyaso. Fourth, six kinds of master artisans were worked in the field of producing ironwork. Metal worker was assigned to one person per melting furnace. Fifth, the quality of final iron materials was controlled by use. Since the 19th century, it had been produced enhanced ironwork.

Studies on Conservation and Metallographic Manufacturing Technique of Iron Mirror in the Korean Christian Museum at Soongsil University Collections (숭실대학교 한국기독교박물관 소장 철제거울의 보존과 금속조직분석을 통한 제작기법 연구)

  • Kim, Haena;Lee, Hyojin;Kim, Sooki
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.257-264
    • /
    • 2012
  • Ancient mirrors are generally made of bronze, and it is very rare to find cases of iron mirrors excavated domestically. In this study, the unidentified ferrous artifact was treated for conservation, and was identified as a mirror. In this process, the sample was taken and analyzed for microstructure, and the manufacturing technology was studied. Analysis involved optical microscope, micro-hardness tester, and SEM-EDS. As the result of analysis, iron mirror structure exist not almost non-metallic inclusions, and partially network cementite was observed. This appears to have been caused by reduced carbon content due to decarburizing the cast iron in the solid state mirror which was created by cast iron. The ledeburite structure of the casting has difficult to cut or polish because has great hardness by high carbon content. Thus, the cast iron mirror was decarburized at a temperature under $850^{\circ}C$ with CO or $CO_2$ blocked, which reduced the hardness of the iron mirror and made it possible to polish the mirror surface. This deformation of structure according to carbon content results from such manufacturing technology.

A Comparative Study on the Metallurgical Characteristics of the Iron Knife Using Traditional Iron-Making Method (전통 제철법을 적용하여 제작한 철제 칼의 금속학적 특성에 관한 비교 연구)

  • Cho, Sung Mo;Cho, Nam Chul;Han, Jung Uk
    • Journal of Conservation Science
    • /
    • v.34 no.5
    • /
    • pp.433-442
    • /
    • 2018
  • In this study, metal properties were compared by preparingthree iron knives from steel ingots produced via traditional iron-making, and ingot which jointed the steel of modern times. Metal microscope and SEM-EDS analysis revealed fine ferrite and pearlite structures of the hypo-eutectoid steel of Fe-C alloys. All samples also exhibited martensite on the blade of the knife. By Vicker's hardness analysis, the hardness of the sand iron knife (K1) was 533.38 HV, sand iron-nickel steel knife (K3) was 514.8 HV, and sand iron-carbon steel knife (K2) was 477.02 HV. The mass reduction due to wear was 0.058% for K1, 0.059% for K3, and 0.144% for K2. EPMA(Electron probe micro-analyzer) analysis of the surface pattern of the specimens confirmed that the patterns were exposed due to differences in the content of C or the chemical composition. Additional research on heat treatment processes is needed to increase the abrasion resistance of blades. Traditional steel ingots could produce high-quality steel if combined with nickel steel.

Study on the Manufacturing of Horizontal plate armour Excavated from Mangi-Sanseong(Castle) with X-ray Radiograph (방사선투과시험에 의한 망이산성 횡장판갑(橫長板甲)의 제작기법 연구)

  • Kim, Hyunjoung;Kim, Midori;Oh, Kwangseob;Lee, Yangsu;Cho, Namchul
    • Conservation Science in Museum
    • /
    • v.7
    • /
    • pp.11-24
    • /
    • 2006
  • Plate armour is an important cultural property that reflects the ancient weaponry and the manufacturing technology of ironware as they are. Among the kinds of iron armour, horizontal plate armour has been very rarely excavated, and there are a few artifacts in their unimpaired shape like the plate armour excavated from Mangisanseong. This report reviews the manufacturing technology of ancient plate armour through its radiograph using appliable nondestructive irradiation and scientific conservation treatment. The seven-tiered plate armour excavated from Mangisanseong has ring hinge to open and shut the right side neck guard. The readout result of radiograph proved iron safety guard of Godaepan (a plate that links neck plate and horizontal plate) and leather safety guard of the right armpit with plate overlap and perforation interval; perforations that seem to have linked shoulder strap on wearing the armour are also observed. In particular, it is identified that the perforation and riveting technique avoided the connection of more than three plates with a rivet. This is an important material to illustrate the best use of function of plate armour overcoming its limit.

Report on the Conservation Treatment for the Artifacts Exhibited in the newly-opened Kimhae National Museum (국립김해박물관(國立金海博物館) 개관(開館) 전시유물 보존처리 보고(報告))

  • Kwon, Hyuk-nam;Ahn, Byong-chan
    • Conservation Science in Museum
    • /
    • v.1
    • /
    • pp.15-26
    • /
    • 1999
  • More than 200 objects selected for the newly-opened Kimhae National Museum were treated for conservation. The objects which represent ancient Kaya culture, were mainly composed of metallic such as gilt bronze, silver, copper alloy and iron. The corrosion products on gilt bronze and copper alloy objects were preserved or removed according to their stability. Minimum treatment was done for preserving the original state of the objects. For silver objects and iron objects with silver-plate decorations, silver surfaces were revealed after treatment of corrosion products and treatments to prevent corrosion of silver and iron were done emphatically. For iron objects, which were stabilized, the original shape of objects was restored and acrylic coating was applied to prevent further corrosion. For the objects which were being corroded, 2-step de-chloride treatments were undertaken. The first step was immersing the objects in a solution of 0.3M sodium hydroxide and the second was the pressure de-chloride treatment using borax-distilled water. The main purpose of those treatments was to get rid of the causes of corrosion. Besides, conservation treatments for potteries, making of special mounting board for exhibition and amendment of various modeling were done too.

Conservation Treatment of the Iron-Helmet Excavated from Oksung-ri Tomb, Pohang (포항(浦項) 옥성리(玉城里) 가-35호분(號墳) 출토(出土) 투구(주(胄))의 보존처리(保存處理))

  • Kim, Jong-oh;Jung, Hye-yun
    • Conservation Science in Museum
    • /
    • v.3
    • /
    • pp.9-13
    • /
    • 2001
  • Being entrusted with the conservation of Kyongju National Museum, the conservators did a conservation treatment on the iron helmet found in the wooden coffin excavated from No. 35 Tomb in Ga-Zone, Okseong-ri, Pohang, Kyongbuk Province. They reported their work ranging from the collection of and conservation treatment on the artifacts found at the excavation site to the restoration of them to the originals.

The Geomorphic Characteristics on the Location of Gyeongju, Capital City of 'Saro' and 'Silla' Kingdomsin Ancient Times, Korea (고대국가 사로국과 신라의 수도 경주의 입지에 미친 지형 특성)

  • Hwang, Sangill;Yoon, Soon-Ock
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.3
    • /
    • pp.79-94
    • /
    • 2013
  • Gyeongju in Saro or Silla one of ancient kingdoms in Yeongnam region of southeast Korea, had been developed as a capital city for thousand years despite its unfavorable geographical location being leaned to the southeastern part of the Korean Peninsula. Although this rare case in the world resulted from various facts relevant to political capability and intelligence of the ancient Gyeongju people, the geomorphic characteristics played a key role for its political development. In this paper, we discuss the establishment and growth of ancient kingdoms in Gyeongju area in terms of geomorphological factors such as the Taebaek and Sobaek mountain ranges, distribution of fault lines and alluvial fans along the eastern coast of the peninsula, characteristics of the coastal regions. That is, abundant grain supply from alluvial fans in Gyeongju and surrounding areas, high population-carrying capacity of land and positioning of an ancient supercity were made possible by the geomorphological contributions. Furthermore, Gyeongju could hold the lead in competition with surrounding kingdoms by accumulation of wealth and military superiority derived from production and circulation of salt and iron works. Gyeongju had become the capital of ancient kingdoms due to the geomorphic advantages during the ancient times in Korea.

Features and Component Analysis of the GeumguJagi(金釦瓷器) Excavated from Seongneung(石陵) (석릉(碩陵) 출토 금구자기(金釦瓷器)의 특징과 성분 분석)

  • Sung, Kiyeol
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.1
    • /
    • pp.150-167
    • /
    • 2020
  • The purpose of this paper is to share the status and introduce a scientific analysis of the GeumguJagi (gilt-silver overlay porcelain, 金釦瓷器) excavated from Seongneung (石陵). This analysis aimed to highlight the GeumguJagi excavated from the Royal Tombs of Goryeo with a clear lower year (1237) and to aid research into the GeumguJagi. In 2001, the National Institute of Cultural Heritage excavated and investigated Seongneung in Heejong (熙宗). Various artifacts such as celadon, gold, bronze, and iron products were collected from the chambers inside of the tomb. There were a total of 160 celadon items including bowls, dishes, glasses, and saucers. Of those, there were 58 celadon items (including fragments) with metal frames on the openings. These consisted of bowls, plates, lids, and saucers. Until recently, in various exhibitions and papers, only one GeumguJagi was known to have been excavated from Seongneung, which was a . However, the survey identified a number of further GeumguJagis. It had been understood from inherited and excavated products that the materials used for ornaments were restricted to high-quality celadon. However, this study confirmed that the excavation of Seongneung demonstrated the use of various other materials for different models and qualities of GeumguJagis. It can be said that it is characteristic that various models and quality are confirmed together through the excavation of Seongneung. A scientific analysis was carried out that selected 12 of 58 products excavated from Seongneung. Results showed that the main component used for Geumgu ornaments was tin (Sn), and trace amounts of copper (Cu) and lead (Pb) were also commonly identified. When analyzing the material used to affix the metal fittings, this was found to be glue (膠) made from animal skins, muscle, and bones. This pattern matches that of the GeumguJagi excavated from Paju Hyeeumwonji, and the reason for this could be assumed on the basis of the contents of the 『Cheongonggaemul (天工開物)』 written by Song Ongsung (宋應星) during the Ming Dynasty. At that time, metals such as tin and copper would have been difficult to obtain. 『Xuānhwafengshi Gaolitujing (宣和奉使高麗圖經)』 shows that the use of metal was limited to certain classes; thus, the use of the GeumguJagi seems to have been centered around the royal family.

Metallurgical Investigation of the Iron Objects from Suchon-ri Site in Gongju (공주 수촌리유적 출토 철제유물의 금속학적 분석)

  • Cho, Hyun Kyung;Cho, Nam Chul;Lee, Hun
    • Journal of Conservation Science
    • /
    • v.30 no.3
    • /
    • pp.317-327
    • /
    • 2014
  • Iron objects excavated from the sites of Mahan and Baekje are dominated by swords, spearheads and arrowheads. Spearheads usually have a function of weapon and swords with ring pommel are considered fancy articles because of ornament in ring pommel. In Gongju Suchon-ri site, the central type and the local type of the Baekje tombs co-exist together. The sword with ring pommel, the long sword and spearheads were excavated. They are investigated metallurgically and we focused of their functions and manufacturing techniques. Solid carburizing technology and quenching of heat treatment applied the sword with ring pommel was presumed as fancy article in the late 4th century while these techniques didn't apply spearhead from same tomb. This informed that the central government of Baekje had high technology on iron manufacture in 4th century. In case of local gentry, they didn't apply this high technology to mass-produced spearheads, even though they had it. Thus, it is able to say the sword with ring pommel was applied techniques of the central government and spearheads, the weapons were applied techniques of local societies.

Study on the Manufacturing techniques & Conservation of Iron Pot from Cheonmachong Ancient Tomb (천마총 출토 철부(鐵釜)의 제작기법 및 보존처리)

  • Lee, Seung Ryul;Shin, Yong Bi;Jung, Won Seob
    • Journal of Conservation Science
    • /
    • v.30 no.3
    • /
    • pp.263-275
    • /
    • 2014
  • It's shown how to proceed the study on Manufacturing techniques & Conservation to the Iron Pot from Cheonmachong Ancient Tomb(the 155th Tomb in Hwangnam-dong). In order to investigate manufacturing techniques of the Iron Pot, some parts of the relic were gathered. After mounting, polishing and etching on the relic, analyzing the metal microstructure was conducted. Also it's conducted a SEM-EDS analysis on the nonmetallic inclusion. White iron structure was observed in the metallurgical structure inspection, SEM-EDS analysis. It seems to be dried slowly at room temperature after casting, doesn't look as particular heat treatment to improve brittleness. It is estimated that it's as the handle seam side were verified about 3cm inch wide, 1.5 thick in center of body, so 2 separate half-completed products was cast with width-type mould. The manufacturing techniques Using white cast iron structure, width-type mould are observable to the Iron Pot excavated from Sikrichong Ancient Tomb & Hwangnamdaechong grand Ancient Tomb around those were constructed the same time. It's able to recognize that it's almost identical manufacturing techniques at that time. Conservation is generically following those are survey of pretreatment, foreign material removal, stabilization, restoration and color matching in the order. cleaning & drying were added to the process as occasion demands. The strengthening treatment were difficult with artifact's volume, low concentration Paraloid NAD-10 solution was spread two or three times with a brush, surface hardening also came up with 15wt% Paraloid NAD-10 solution after the conservation was complete. There were connection & restoration for the restoration to the damage after modeling forms that it's similar to damaged parts by using the Fiber Reinforced Plastic resins(POLYCOAT FH-245, mold laminated type). Throughout this research, capitalizing on accumulations of measurements about the production technique of Iron Pot in the time of the fifth and 6th centuries is no less important than the Iron artifact's conservation for a better study in the future.