• Title/Summary/Keyword: 철손

Search Result 147, Processing Time 0.027 seconds

THE CHARACTERISTIC ANALYSIS OF SOFT MAGNETIC COMPOSITES FOR MOTOR CORE CONSIDERING CORE SHAPE (모터 코어용 연자성체의 형상별 특성 분석)

  • Lee, Kyu-Seok;Cha, Hyun-Rok;Yun, Cheol-Ho;Jung, Tae-Uk;Son, Hyun-Taek;Jeon, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.240-241
    • /
    • 2007
  • 연자성 분말의 독특한 특성은 3D 등방성 강자성체 이며, 이 때문에 3차원적 자속(flux)를 활용할 수 있어 전기 강판(sillicon steel)에 비해 3차원 성형시 유리한 장점을 가지고 있다는 점이다.[1] 따라서 본 논문에서는 연자성 분말 (Soft Magnetic Composites)의 3차원 성형시 각 성형 형태에 따른 압분 시료의 전기적, 기계적 특성에 대한 연구를 하였다. 연자성 분말의 코어 형상을 크게 ' '형으로 구분하여 압분 코어를 만든 후 압분 코어의 Overhang 각도 및 코어 Teeth의 길이에 따른 파라미터에 변화를 주어 철손 및 경도, 밀도를 측정 하였다. 이 논문에서 우리는 3차원 코어 성형시 전기적, 기계적 특성이 가장 우수한 코어 성형 조건을 연구해 낼 수 있었다.

  • PDF

Harmonic Reduction of Synchronous Generator by Permanent Magnet Shape Deformation (영구자석 형상 변형을 통한 동기발전기 고조파 저감)

  • Beom-Seok, Byeon;Eui-Jong, Park;Yong-Jae, Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1081-1088
    • /
    • 2022
  • The harmonics of synchronous generators increase iron and copper loss, which is the cause of fever. For harmonic reduction, the armature winding method is used as a distribution winding, a short pitch winding. In this paper, we want to improve the waveform of the instrument voltage by reducing the harmonics in a new way to the shape of the permanent magnet. The method cuts both ends of the permanent magnet and adjusts the air gap by increasing and decreasing the area according to the set value. By varying the distribution of magnetic flux density, the resulting electromotive voltage and strain were compared. This compares the shape-changing models of permanent magnets and shows an effective deformation method.

A Study on Design and Manufacture of Slotless Outer Rotor BLDC Motor for a Vehicle Blower (자동차 송풍장치용 Slotless Outer Rotor BLDC 모터 설계 및 제작에 관한 연구)

  • Hyon-Jang Lee;Hee-Seok Jeong;Sun-Ho Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.827-834
    • /
    • 2023
  • In this paper, a slotless outer rotor BLDC motor for a vehicle blower was designed and manufactured to improve the disadvantages of general motors. The proposed motor solves the noise caused by mechanical friction of DC motor during rotation by removing the brush, Also, slotless air-gap windings are used to improve cogging torque by BLDC motor slots. Then, the motor has a structure in which a magnet is attached to the external rotor and rotates simultaneously with the internal rotor, there is no change in magnetic flux. Therefore, it has high efficiency by fundamentally reducing iron loss.

Efficiency Optimization Control of SynRM Drive with HAI Controller (HAI 제어기에 의한 SynRM 드라이브의 효율 최적화 제어)

  • Jung, Dong-Wha;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.98-106
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the cower and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and f-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent(HAI) controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

Efficiency Optimization Control of SynRM with Hybrid Artificial Intelligent Controller (하이브리드 인공지능 제어기에 의한 SynRM의 효율 최적화 제어)

  • Chung, Dong-Hwa;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.1-9
    • /
    • 2007
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the coner and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

A Study on Design of 50kW PMSG for Micro-grid Application (마이크로그리드용 50kW급 PMSG 설계에 관한 연구)

  • Jeong, Moon-Seon;Moon, Chae-Joo;Kim, Hyoung-Gil;Chang, Young-Hak;Park, Tae-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.527-536
    • /
    • 2014
  • In this paper, the 50kW aerogenerator which is applicable to the microgrid was designed and analyzed by using commercial simulation program Maxwell 2D. Particularly, the suggested PMSG to reduce the cogging torque introduced the offset and skew concept. The suggested optimal value of offset and skew was decided by 2mm and 60 degree of electric angle. The simulation results of the PMSG when load operation condition showed the average harmonic distortion 1.3%, voltage 322.41V, current 94.95A, and iron loss 9.73W, eddy current loss 73.68W, copper loss 3.52kW. The capacity of aerogenerator calculated 61.56kW, and the suggested design process can be applied to higher capacity generator.

Harmonic Analysis of Power Conversion System for Torque and Speed Changing of Electric Propulsion Ship (전기추진선박의 토크 및 속도변화에 따른 전력변환장치의 고조파 분석)

  • Kim, Jong-Su;Kim, Seong-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • There are various environmental conditions under which ship may navigate over ocean or in harbor. Ship's torque and speed change frequently under the voyage conditions. In this case, harmonics is created in the electrical power systems. The major adverse impacts of voltage and current harmonics in the electrical power systems on generator, transformer, converter, inverter and propulsion motor lead to the increase of machine heating caused by iron and copper losses which are dependent on frequency. In this paper, an analysis of THD(total harmonic distortion) for currents and voltages in the propulsion equipment was carried out. The THD and torque ripple in the input currents of the propulsion motor have been confirmed by the simulation results.

A Study on the Eddy Current Loss of the Permanent Magnet for PMSG for the Wind Turbine Application (풍력터빈 적용을 위한 PMSG용 영구자석의 와전류손실에 관한 연구)

  • Choi, Man-Soo;Moon, Chae-Joo;Sun, Rui;Chang, Young-Hak;Park, Tae-Sik;Jeong, Moon-Seon;Kwak, Seung-Hun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.8-15
    • /
    • 2014
  • The objective of this paper is to suggest a design topology of permanent magnet synchronous generator with 2,000kW capacities for wind turbine. The suggested topology is to provide 3 split magnet PMSG instead of single magnet, and performed an analysis of eddy current loss and iron loss for suggested type using ansoft maxwell commercial program. The simulation results of suggested magnet type show there duction of eddy current loss as 13.87kW with loadless conditions and23.48kW with rated conditions, but iron loss for rotor yoke show the in creasing trend as2.2kW with loadless conditions and 0.2kW with rated conditions. The suggested 3 split maget type is to identified as more useful for 2,000kW PMSG.

An Analysis and Optimum Design of o Neutral Line Harmonics Eliminating Reactor (중성선 영상고조파 저감용 특수 Reactor 최적설계 연구)

  • Shin, Pan-Seok;Chung, Gyo-Bum;Kim, Han-Deul;Kim, Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.33-41
    • /
    • 2006
  • In the modem power distribution systems, there are lots of zero-phase current harmonics in the neutral power line due to much usages of the controlled switching devices, various semiconductor power converting systems, OA(Office Automation) equipments, PC etc. In order to minimize the current harmonics a zero-phase neutral line current eliminating reactor (NHER) is designed and analyzed its performance using the finite element program. For the design of NHER a program is developed using C++ program. To verify the program a case model(380/220[V], 200[A]) is designed and analyzed by the developed program. As the results of the optimal design, the core loss is reduced by 26[%] with eliminating of the current harmonics. Especially the ninth harmonics is much reduced as compared with the others. When the design of NHER is adapted to the load of the power system, the eliminating effect and efficiency of the device will be much better

Efficiency Optimization Control of IPMSM using Neural Network (신경회로망을 이용한 IPMSM의 효율 최적화 제어)

  • Chol, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.40-49
    • /
    • 2008
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications and so of due to their excellent power to weight ratio. To obtain maximum efficiency in these applications, this paper proposes the neural network control method. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the error back propagation algorithm(EBPA) of neural network. The minimization of loss is possible to realize eHciency optimization control for the IPMSM drive. This paper proposes high performance and robust control through a real time calculation of parameter variation such as variation of back emf constant, armature resistance and d-axis inductance about the motor operation. Proposed algorithm is applied IPMSM drive system, prove validity through analysis operating characteristics con011ed by efficiency optimization control.