• Title/Summary/Keyword: 철도차량 전두부

Search Result 19, Processing Time 0.022 seconds

Experimental Study of the Internal/external Pressure Variation of TTX Travelling through a Tunnel (한국형 틸팅차량의 터널 주행시 실내/외 압력변화에 대한 실험적 연구)

  • Yun, Su-Hwan;Kwak, Min-Ho;Lee, Dong-Ho;Kwon, Hyeok-Bin;Ko, Tae-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.309-314
    • /
    • 2009
  • When a train enters into a tunnel, a compression wave is generated by a front nose and a expansion wave is generated by a rear tail respectively. The interaction between pressure waves and the train makes the internal and external pressure of the train change dramatically. In this paper, we had measured the internal and external pressure variations of TTX and analyzed the pressure variations as the tunnel length. Also, the rate of internal pressure variations were investigated with the current airtight condition of TTX. In short tunnels, the internal and external pressure variation were not large because the superposition of pressure waves was not happened. In long tunnels, however, the rapid and large pressure variations were shown because of the superpositions between the same sort of pressure waves, such as expansion wave and expansion wave or compression wave and compression wave. In specific length tunnels, the pressure variation and the pressure variation rates were largely lessened because the compression wave and expansion wave were superposed.

A Study on Prediction of Overriding Behavior Leading Vehicle in Train Collision (철도차량 충돌시 선두차량의 타고오름량 예측 연구)

  • Kim, Jun Woo;Koo, Jeong Seo;Kim, Geo Young;Park, Jeong Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.711-719
    • /
    • 2016
  • In this study, we derived an theoretical equation, using a simplified spring-mass model for the rolling stock, to obtain the overriding behavior of a leading vehicle, which is considered as the main factor in train accidents. To verify the derived equation, we created a simple 2D model based on the theoretical model, and a simple 3D model considering the characteristics of the power bogie. We then compared the theoretical results with the simulation results obtained using LS-DYNA. The maximum relative derivations in the vertical displacements at the first end-buffer, which is the most important point in overriding, were 3.5 [%] and 1.7 [%] between the two results. Further, we evaluated collision-induced overriding displacements using the theoretical equation for a rubber draft gear, a hydraulic buffer under various collision conditions. We have suggested a theoretical approach for the realization of overriding collision accidents or the energy absorption design of the front end of trains.

A study on the Color Changes of Railway Nose Shape (철도차량 전두부의 색채 변천에 관한 연구)

  • Lee, Hee-Yup;Kim, Chang-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1827-1834
    • /
    • 2007
  • The purpose of research will establish the foundation to enhance the skills of Railway Color Design in the future by accurately analysing the Railway Color characteristics. The emotion and demnds of times influences trend of Railway Color Design, the contents of this research also reflects trend in society and culture. The research contains the history of Railway Design and advance research of Railway Color trend especially influenced by society and culture in the from the 1960's to the year 2005. The study is based on the concept of Railway Color Design. it analyzed the related current of society, culture and Railway Color. Collected Railway Color samples(Railway 46 images) were studied by using visual sensation. The Munsell Color System was used as references. This research analyzed railway introduced as railway models by top 4 nation (United Kingdom, Germany, France, Japan) and Korea in the past years(1960-2005) for their Railway Color Design trend by Munsell Color System. Although the Railway industry has rapidly risen according to life style in society and culture, there has been a lack of organized data for Railway Color Planing. this research on the basis will offer the significant information for Railway Color Design.

  • PDF

Aerodynamic Drag Reduction on High-performance EMU Train by Streamlined Shape Modification (유선형 형상 개선을 통한 고성능 EMU 열차의 공기저항 저감 연구)

  • Kwon, Hyeok-Bin;Hong, Jai-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.169-174
    • /
    • 2013
  • The effect of modifying the shape of a high-performance EMU train on the aerodynamic drag is studied here using Computational Fluid Dynamics(CFD) based on three dimensional Steady-state Navier-Stokes equation and two equation turbulence modeling. FLUENT 12 and Gambit 2.4.6 are employed for a numerical simulation of the aerodynamic drag of a streamlined-shape train as well as a proto type train. The characteristics of the aerodynamic drag of trains in tunnels are analyzed in a comparison with these characteristics in an open space. The contribution of the aerodynamic drag of each case is also investigated to establish principal pertaining to drag reduction for urban trains in tunnels. The aerodynamic drag of a streamlined train was reduced to 9.8% relative to a proto-type train with a blunt nose and a protruding roof facility and underbody shape: the running resistance is expected to be reduced by as much as 4% at a running speed of 80km/h.

Development of aerodynamic noise measurement method for high-speed trains (고속철도차량의 공력소음 측정 시험법 개발)

  • Minseung Jung;Jaehwan Kim;Hyung-Suk Jang;Jonghwan Kim;Cheolung Cheong;Kwongi Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.131-137
    • /
    • 2024
  • Aerodynamic noise generated by the surrounding flow of a train traveling at high speed affects both outdoor and indoor noise. This study's goal is to develop a test method to measure and quantitatively evaluate aerodynamic noise through pressure perturbation data on the train surface. To accurately evaluate aerodynamic noise, it is important to separate and evaluate the compressive and incompressible pressure fluctuations mixed in the acquired surface pressure fluctuation data. This is because the noise transmission characteristics of the two pressure fluctuations are different. First, the installation length and interval of the microphone were determined to acquire surface pressure fluctuation data, and wavenumber-frequency analysis was performed to separate incompressible pressure fluctuation and compressible pressure fluctuation to obtain a sound pressure level spectrum. Finally, as a result of comparing the test results measured in the train head and trail, It was confirmed that the pressure fluctuation on the train head surface was greater than that on the tail.

CFD Analysis of Drag Force on leading Cab of Tilting Train with 180km/h Service Speed (수치해석을 통한 180km/h급 틸팅차량 전두부의 주행 공기저항 해석)

  • Ko Taehwan;Song Younsoo;Han Seung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.351-357
    • /
    • 2003
  • The optimal design for a leading car considering the aerodynamic resistance is required on the high-speed train due to increasing of ratio of drag force with proportion for the square of velocity. The aerodynamic analysis using CFD in the stage of concept design offers more economical analysis method which is used to estimate the influence of flow and pressure around the leading car than the experimental method using the Mock-up. In this study, we want to assist the artistic design with aerodynamics analysis in order to get the optimal design for leading car with the operation speed at 180km/h. The results of aerodynamic analysis for two leading car models which one is expressed with lineal beauty and the other is with curvaceous beauty are compared with each other and they offer the proposal of modification for two models in order to decrease the drag force. The shape of curvaceous model is better for the pressure force but slightly worse for the viscous force than the other. The Fluent software is used for the calculation of flow profile in this study.

  • PDF

A Study on Development of Prototype Test Train Design in G7 Project for High Speed Railway Technology (G7 고속전철기술개발사업에서의 시제차량 통합 디자인 개발)

  • 정경렬;이병종;윤세균
    • Archives of design research
    • /
    • v.16 no.4
    • /
    • pp.185-196
    • /
    • 2003
  • The demand for an environment-friendly transportation system, equipped with low energy consumption, and low-or zero-pollution has been on the increase since the beginning of the World Trade Organization era. Simultaneously, the consistent growth of high-speed tram technology, combined with market share, has sparked a fierce competition among technologically-advanced countries like France, Germany, and Japan in an effort to keep the lead in high-speed train technology via extensive Research and development(R&D) expenses. These countries are leaders in the race to implement the next-generation transportation system, build intercontinental rail way networks and export the high-speed train as a major industry commodity. The need to develop our own(Korean) 'high-speed train' technology and its core system technology layouts including original technology serves a few objectives: They boost the national competitive edge; they develop an environmental friendly rail road system that can cope with globalization and minimize the social and economic losses created by the growing traffic-congested delivery costs, environment pollution, and public discomforts. In turn, the 'G7 Project-Development of High Speed Railway Technology' held between 1996 and 2002 for a six-year period was focused on designing a domestic train capable of traveling at a speed of 350km/h combined and led to the actual implementation of engineering and producing the '2000 high-speed train:' This paper summarizes and introduces one of the G7 Projects-specifically, the design segment achievement within the development of train system engineering technology. It is true that the design aspect of the Korean domestic railway system program as a whole was lacking when compared with the advanced railroad countries whose early phase of train design emphasized the design aspect. However, having allowed the active participation of expert designers in the early phase of train design in the current project has led to a new era of domestic train development and the implementation of a way to meet demand flexibly with newly designed trains. The idea of a high-speed train in Korea and its design concept is well-conceived: a faster, more pleasant, and silent based Korean high-speed train that facilitates a new travel culture. A Korean-type of high-speed train is acknowledged by passengers who travel in such trains. The Korean high-speed prototype train has been born, combining aerodynamic air-cushioned design, which is the embodiment of Korean original design of forehead of power car minimized aerodynamic resistance using a curved car body profile, and the improvement of the interior design with ergonomics and the accommodation of the vestibule area through the study of passenger behavior and social culture that is based on the general passenger car.

  • PDF

A Study on Tail Vibration Reduction for the Next Generation High Speed EMU (차세대 분산형 고속열차의 후미진동 저감에 관한 연구)

  • Jeon, Chang-Sung;Kim, Young-Guk;Kim, Seok-Won;Kim, Sang-Soo;Choi, Sung-Hoon;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.543-549
    • /
    • 2012
  • This study describes the tail vibration reduction for the next generation high speed EMU(HEMU-430X). The model of 6 cars was generated and the calculation was performed using VAMPIRE(railway vehicle dynamic software). In view of ride characteristics, HEMU-430X was expected to sway at the tail because of the yaw damper direction. The lateral acceleration of vehicle body exceeded the criteria because of hunting. To reduce this hunting motion, some methods such as wheel profile change, the change of damping coefficient for the 2nd lateral damper, the damping coefficient change of yaw damper were tested, but had little effect. Finally, the yaw damper direction was changed and the tail vibration disappeared. In real running test, the tail vibration appeared at the speed of 150km/h and the yaw damper direction change made the vehicle stable at the speed of 300km/h. The maximum test speed of HEMU-430X is 430km/h. If the tail vibration appears at higher speed, some other methods in this study may be considered to reduce it.

A study on the characteristics for aerodynamics at high speed in railway tunnels - focused on the micro pressure wave (고속주행시 철도터널내 공기압 특성에 관한 기초연구 - 미기압(MPW)을 중심으로)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.249-260
    • /
    • 2014
  • When a train enters the tunnel at high speed, the pressure wave occurs. When this pressure wave reaches at the exit of tunnel, some are either emitted to the outside or reflected in tunnel by the form of expansion wave. The wave emitted to the outside forms the impulsive pressure wave. This wave is called 'Micro Pressure Wave'. The micro pressure wave generates noise and vibration around a exit portal of tunnel. When it becomes worse, it causes anxiety for residents and damage to windows. Thus, it requires a counterplan and prediction about the micro pressure wave for high speed railway construction. In this paper, the effects of train head nose and tunnel portal shape were investigated by model test, measurement for the micro pressure wave at the operating tunnel as well as numerical analysis for the gradient of pressure wave in the tunnel. As results, a method for predicting the intensity of the micro pressure wave is suggested and then the intensity of the micro pressure wave is analyzed by the tunnel length and the cross-sectional area.