• Title/Summary/Keyword: 철도안전

Search Result 1,462, Processing Time 0.02 seconds

A Study on the Operation Plan of the Gangwon-do Disaster Management Resources Integrated Management Center (강원도 재난관리자원 통합관리센터 운영방안에 관한 연구)

  • Hang-Il Jo;Sang-Beom Park;Kye-Won Jun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.17 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • In Korea, as disasters become larger and more complex, there is a trend of shifting from a focus on response and recovery to a focus on prevention and preparedness. In order to prevent and prepare for disasters, each local government manages disaster management resources by stockpiling them. However, although disaster management resources are stored in individual warehouses, they are managed by department rather than by warehouse, resulting in insufficient management of disaster management resources due to the heavy workload of those in charge. In order to intensively manage these disaster management resources, an integrated disaster management resource management center is established and managed at the metropolitan/provincial level. In the case of Gangwon-do, the subject of this study, a warehouse is rented and operated as an integrated disaster management resource management center. When leasing an integrated management center, there is the inconvenience of having to move the location every 1 to 2 years, so it is deemed necessary to build a dedicated facility in an available site. To select a location candidate, network analysis was used to measure access to and use of facilities along interconnected routes of networks such as roads and railways. During network analysis, the Location-Allocation method, which was widely used in the past to determine the location of multiple facilities, was applied. As a result, Hoengseong-gun in Gangwon-do was identified as a suitable candidate site. In addition, if the integrated management center uses our country's logistics system to stockpile disaster management resources, local governments can mobilize disaster management resources in 3 days, and it is said that it takes 3 days to return to normal life after a disaster occurs. Each city's disaster management resource stockpile is 3 days' worth per week, and the integrated management center stores 3 times the maximum of the city's 4-day stockpile.

Mechanism of steel pipe reinforcement grouting based on tunnel field measurement results (터널 현장 계측결과를 통한 강관보강 그라우팅의 거동 메커니즘)

  • Shin, Hyunkang;Jung, Hyuksang;Lee, Yong-joo;Kim, Nag-young;Ko, Sungil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.133-149
    • /
    • 2021
  • This study aims to report the behavioral mechanism of steel pipe reinforcement grouting, which is being actively used to ensure the stability of the excavation surface during tunnel excavation, based on measurements taken at the actual site. After using a 12 m steel pipe attached with a shape displacement meter and a strain gauge to reinforce the actual tunnel surface, behavioral characteristics were identified by analyzing the measured deformation and stress of the steel pipe. Taking into account that the steel pipes were overlapped every 6 m, the measured data up to 7 m of excavation were used. In addition, the behavioral characteristics of the steel pipe reinforcement according to the difference in strength were also examined by applying steel pipes with different allowable stresses (SGT275 and SGT550). As a result of analyzing the behavior of steel pipes for 7 hours after the first excavation for 1 m and before proceeding with the next excavation, the stress redistribution due to the arching effect caused by the excavation relaxation load was observed. As excavation proceeded by 1 m, the excavated section exhibited the greatest deformation during excavation of 4 to 6 m due to the stress distribution of the three-dimensional relaxation load, and deformation and stress were generated in the steel pipe installed in the ground ahead of the tunnel face. As a result of comparing the behavior of SGT275 steel pipe (yield strength 275 MPa) and SGT550 steel pipe (yield strength 550 MPa), the difference in the amount of deformation was up to 18 times and the stress was up to 12 times; the stronger the steel pipe, the better it was at responding to the relaxation load. In this study, the behavior mechanism of steel pipe reinforcement grouting in response to the arching effect due to the relaxation load was identified based on the measured data during the actual tunnel excavation, and the results were reported.