• Title/Summary/Keyword: 철근콘크리트 건물

Search Result 257, Processing Time 0.032 seconds

Nonlinear Finite Element Analysis of PHWR Containment Building (가압중수형 격납건물의 비선형 유한요소해석)

  • Lee, Hong-Pyo;Song, Young-Chul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.287-290
    • /
    • 2009
  • 이 논문에서는 가압중수형(Pressurized Heavy Water Reactor) 프리스트레스 콘크리트 격납건물의 1/4 축소모델에 대한 극한내압능력과 전반적인 비선형거동에 관한 유한요소 해석을 수행하였다. 가압중수형 격납건물은 원통형 벽체와 돔으로 구성되었고, 4개의 부벽을 갖는다. 유한요소해석을 위해서 상용코드 ABAQUS를 이용하였고, 콘크리트, 철근 및 텐던에 대한 수치모델링을 작성하여 자중과 내압하중을 적용하였고, 텐던의 2% 변형률을 기준으로 극한내압능력을 평가하였다. 이때 사용된 재료모델로 콘크리트는 Concrete Damaged Plasticity 모델을 사용하였고, 철근과 텐던은 Elasto-Plastic 모델을 적용하였다. 유한요소 해석결과 콘크리트의 초기균열 0.41MPa에서 발생하였고, 극한내압은 0.56MPa 정도로 평가되었다.

  • PDF

철근 콘크리트건물의 접지 및 피뢰설비 시스템 검토

  • 이광광
    • Electric Engineers Magazine
    • /
    • v.254 no.10
    • /
    • pp.34-40
    • /
    • 2003
  • the# star city 신축공사는 철골(판매시설), 철근콘크리트(주거시설)가 병행, 시공되고 대지와의 접촉면이 큰 고층 건축물로 각종의 다양한 전기, 전자, 통신설비 기기가 도입되고 있어 문제가 되는 것이 접지의 시공법이다. 건축물에 있어서 뇌보호란 크게 외부 뇌보호와 내부 뇌보호로 나눌 수 있으며 외부 뇌보호는 직격뢰로 부터 건물등을 보호하는 것이고 내부 뇌보호는 낙뢰시 전위상승으로 인한 영향 및 뇌전류의 전자효과를 저감하는 것으로 특히 과전압 내성이 작은 전자기기 등을 대상으로 하는 보호이다.

  • PDF

Reduced Degree of Freedom Modeling for Progressive Collapse Analysis of Tall Buildings using Applied Element Method (응용 요소법을 이용한 초고층 건물의 축소 모델링 연쇄붕괴 해석)

  • Kim, Han-Soo;Wee, Hae-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.599-606
    • /
    • 2014
  • Since progressive collapse of tall buildings can cause enormous damage, it should be considered during the design phase of tall buildings. The progressive collapse analysis of tall buildings using finite element methods is almost impossible due to the vast amount of computing time. In this paper, applied element method was evaluated as an alternative to the finite element method. Reduced DOFs modeling technique was proposed to enable the progressive collapse analysis of tall buildings. The reduced DOFs model include only the part which is subjected to direct damage from blast load and the structural properties such as mass, transferred load and stiffness of excluded parts are accumulated into the top story of the reduced DOFs model. The proposed modeling technique was applied to the progressive collapse analysis of 20-story RC building using three collapse scenarios. The reduced DOFs model showed similar collapse behavior to the whole model while the computing time was reduced by 30%. The proposed modeling technique can be utilized in the progressive collapse analysis of tall buildings due to abnormal loads.

A Proposal of Rapid-Screening Method for Seismic Capacity Evaluation of Low-Rise R/C Buildings - Part 1. Concept of Seismic Capacity Evaluation - (저층 철근콘크리트 건물의 간이 내진성능 평가법 제안 - Part 1. 내진성능평가의 개념 -)

  • Lee, Kang-Seok;Kim, Yong-In;Wi, Jeong-Doo;Hwang, Ki-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.463-464
    • /
    • 2009
  • This study proposes a new rapid-screening method for more reasonably evaluation the seismic capacities of low-rise RC buildings controlled by both shear and flexure. At the same time, this develops the equation of damage judgement and seismic capacity evaluation for quantitatively evaluating the seismic capacities. Using this evaluating method, it is impossible to estimate the evaluation score and earthquake-damage degree confronted with this and evaluate for efficiently the seismic capacities

  • PDF

Prediction of Differential Column Shortening for Reinforced Concrete Tall Buildings (시공단계를 고려한 철근콘크리트 고층건물 기둥의 부등축소량 해석)

  • Lee, Tae-Gyu;Kim, Jin-Keun;Song, Jin-Gyu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.99-107
    • /
    • 1999
  • In this paper, the prediction method of the differential column shortening for cracked reinforced concrete tall buildings due to the construction sequence is presented. The cracked sectional properties from the strain and curvature of the sectional centroid is directly used. And the stiffness matrix of concrete elements considering the axial strain-curvature interaction effect is adopted. The creep and shrinkage properties used in the predictions were calculated in accordance with ACI 209, CEB-FIP 1990, and B3 model code. In order to demonstrate the validity of this algorithm, the prediction by the proposed method are compared with both the results of the in-situ test and the results by other simplified method. The proposed method is in good agreement with experimental results, and better than the simplified method.

Analyses of Structural Performances for Reinforced Concrete Middle-Rise Residential Building under Construction (중층 규모 철근콘크리트 주거형 건물의 시공 중 구조성능 분석)

  • Ko, Jun-Young;Kim, Jae-Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.96-103
    • /
    • 2019
  • Middle-rise reinforced concrete residential buildings account for a large portion of the Korea, and structural performance analysis are needed for problems that could occur during the construction of such buildings. Thus, a middle-rise reinforced concrete residential building with 25 stories are selected as a sample model for structural performance analysis. The structural analyses are performed by dividing a sample model into the construction stage models of the 5th, 10th, 15th, 20th and 25th floors and the completion stage models with the design completed. For the comparisons of structural performances, Eigenvalue analysis results and lateral-load-resisting capabilities and structural design performances of structural members are analyzed. As a result of analyses, it was confirmed that both the construction and completion stage do not exceed KBC criteria limits at the lateral displacement and story drift ratio, and structural design performances of structural members confirm structural safety in all components except for some members of the wall. Therefore, it was concluded that if structural stability is obtained during the completion stage of a middle-rise reinforced concrete residential building, structural stability is secured under construction.

A Study on the Automation in Reinforcing-bar Configurations for Frame Members based on the Case-study of Reinforced Concrete Structure (사례분석 기반 철근콘크리트 구조물의 프레임부재 자동배근 생성에 관한 연구)

  • Lee, Je-Hyuk;Jang, Ja-Wang;Cho, Young-Sang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.383-386
    • /
    • 2011
  • 본 논문에서는 철근콘크리트 구조물의 프레임부재 철근을 대상으로 배근 설계 및 철근 형상화 알고리즘을 구축하여 자동배근을 생성하는데 목적이 있다. 철근 콘크리트의 BIM 통합 설계 시스템은 철근 배근정보의 생성과 호환이 원활하지 않아 표준 정보 호환 체계가 구축되지 않은 실정이다. 기존 2차원 기반 프로세스에서는 철근 배근 설계에 있어 표준화된 기준에 따른 배근이 아닌 관행이나 일률적인 배근 지침에 따라 배근 상세를 정하고 있고, 2차원 배근 설계 결과만 제시하고 있어 상호 호환 가능한 철근 배근 정보데이터가 생성되지 않는다. 철근 콘크리트 구조에서의 철근 배근 정보를 생성하고 BIM 통합 구조 설계시스템에서의 정보 호환성을 확보하기 위해, 프레임부재 철근을 대상으로 구조 해석 데이터베이스와 통합 설계 플랫폼 간의 호환 시스템을 생성하고, 콘크리트학회 콘크리트 구조설계기준에 따른 배근 설계 및 철근 형상화 알고리즘을 구축하여 자동배근시스템(Integrated Reinforcement for Frame Members, 이하 IRFM)을 개발하는데 목적이 있다.

  • PDF

Seismic Performance Evaluation of Medium-and Low-rise R/C Buildings Strengthened with RCSF External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 RCSF 외부접합공법으로 내진보강 된 중·저층 철근콘크리트 건물의 내진성능 평가)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • In this study, a new RCSF (Reinforced Concrete Steel Frame) external connection method is proposed for seismic strengthening of medium-and low-rise reinforced concrete buildings. The RCSF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside structures. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and ductility. Test results revealed that the proposed RCSF strengthening method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Nonlinear Seismic Analysis of a Three-dimensional Unsymmetrical Reinforced Concrete Structure (3차원 비대칭 철근콘크리트 구조물의 비선형 지진응답해석)

  • Lim, Hyun-Kyu;Lee, Young-Geun;Kang, Jun Won;Chi, Ho-Seok;Cho, Ho-Hyun;Kim, Moon-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.429-436
    • /
    • 2014
  • This paper presents the seismic performance of a geometrically unsymmetrical reinforced concrete building considering torsional effect and material nonlinearity of concrete and steel. The reinforced concrete building is a structure for seismic performance evaluation in the SMART-2013 international benchmark program. Nonlinear constitutive models for concrete and steel were constructed, and their numerical performance was demonstrated by various local tests. Modal analysis showed that the first three natural frequencies and mode shapes were close to the experimental results from the SMART-2013 program. In the time history analysis for low-intensity seismic loadings, displacement and acceleration responses at sampling points were similar to the experimental results. In the end, nonlinear time history analysis was conducted for Northridge earthquake to predict the behavior of the reinforced concrete structure under high-intensity seismic loadings.