• Title/Summary/Keyword: 철근의 영향

Search Result 942, Processing Time 0.024 seconds

Structural Performance Evaluation of Prestressed Concrete Trapezoidal Girders Using Socket Joint System (소켓연결 방식을 이용한 프리스트레스트 콘크리트 제형 거더의 구조성능 평가)

  • Shim, Won-Bo;Min, Kyung-Hwan;Choi, Hong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7244-7249
    • /
    • 2015
  • In this study, in order to asses the structural performance of trapezoidal PSC girder using a socket joint system and it is possible to calculate the optimized cross-section of the web element tests were carried out for each specimens. we conducted a socket joint performance test, web bending and shear performance tests and all tests were performed at 4 point loading method. The initial crack load of socket joint specimen was significantly lower than the reference specimen but post peak behavior was no significant differences. And the length of the loop joint of the reinforcing bars had no significant effect on the maximum load. As a web shear tests, to obtain a maximum load of the specimen has a prestressing rod reinforced at tension side. As a web flexural tests, to obtain higher diagonal cracking load in specimen of reinforced using prestressing rod than reference specimen.

An Evaluation on Punching Shear Capacity of R/C Flat Plate Slab (RC 플랫 플레이트 슬래브의 뚫림전단성능평가)

  • Kim, Jong-Keun;Shin, Sung-Woo;Yang, Ji-Soo;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.205-213
    • /
    • 2003
  • The primary purpose of this study is to investigate punching shear capacity of flat plate slab using high strength concrete in column. It may be much contributed to economy efficiency and structural advantages that High Strength Concrete(HSC) used for vertical member and Normal Strength Concrete(NSC) for horizontal member. Therefore, six plate flat slab specimens with HSC column and NSC slab had been made and tested with real scale. The major variables were compressive strength of concrete(fck=285, $460kgf/cm^2$), extended length of HSC from column face and amount of shear reinforcements. As the result of this test, the maximum load and punching shear capacity of specimens is affected by extended length and shear reinforcements.

Parametric Study on Long-Term Deflections of Flat Plates Considering Effects of Construction Loads and Cracking (시공하중 및 균열 효과를 고려한 플랫 플레이트의 장기 처짐에 대한 변수 연구)

  • Choi, Seung Min;Eom, Tae Sung;Kim, Jea Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.44-54
    • /
    • 2012
  • The structural designs of RC flat plates that have no flexural stiffness by boundary beams may be governed not by strength conditions but by serviceabilities. Specially, since over-loading and tensile cracking in early-aged slabs significantly increase the immediate and long-term deflections of a flat plate system, a construction sequence and its impact on the slab deflections may be decisive factors in designs of flat plate systems. In this study, the procedure of calculating slab deflections with considering construction sequences, concrete cracking, and long-term effects is proposed. Using the proposed method, the parametric study for deflections of flat plates is performed. With various conditions for slab construction cycle, the number of shored floors, tensile or compressive reinforcement ratio, compressive strength of concrete, construction live load, and slab thickness, the immediate deflection during construction and long-term deflections after completion are analyzed. The calculated results are compared with the serviceability limits offered by the structural design code.

Flexural Strength Estimation of Half-Depth Precast Concrete Composite Slab Manufactured by the Long-Line Method (롱라인 공법으로 제작한 반단면 프리캐스트 콘크리트 합성 슬래브의 휨강도 평가)

  • Choi, Jin-Woo;Seo, Su-Hong;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.48-56
    • /
    • 2013
  • Prestressed concrete (PSC) members are readly available in civil engineering applications due to the convenience of construction and easy of quality control in the manufacturing process of the member. Especially, half-depth precast concrete composite slab, which is one of the PSC flexural members is developed recently using the long-line method. The half-depth precast concrete composite slabs are composed of the precast concrete and the in-situ concrete placed at the site. In this paper, we present the results of experimental investigations pertaining to the pretensioning efficiency and the flexural behavior of half-depth precast concrete composite slab which is made of precast PSC manufactured by the long-line method. In the long-line method, the pretensioned precast member is manufactured simultaneously, by tensioning tendons at once. In addition, we suggest the equation that can estimate the flexural strength of half-depth precast concrete composite slab reasonably by considering the effects of rebar embedded in the precast PSC flexural member.

Effects of Tie Details on Seismic Performance of RC Columns Subjected to Low Compression Loads (낮은 압축력을 받는 철근콘크리트 기둥의 내진성능에 대한 띠철근 상세의 영향)

  • Kim, Chul Goo;Park, Hong Gun;Eom, Tae Sung;Kim, Tae Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.195-205
    • /
    • 2015
  • Various non-seismic tie details are frequently used for one- and two-story small buildings because the seismic demand on their deformation capacities is not relatively significant. To evaluate the effects of the non-seismic tie details on the seismic performance of reinforced concrete columns, six square columns with a cross section of $400{\times}400mm$ and six rectangular columns with a cross section of $250{\times}640mm$ were tested. The anchorage details at both ends and spacing of tie hoops, along with the cross-sectional shape and the magnitude of axial load, were considered as the primary test parameters. Test results showed that square columns had higher stiffness and lower lateral deformation rather than rectangular columns. Both lap spliced tie and U-shaped tie provided comparable or improved seismic performance to $90^{\circ}$ hook tie in terms of maximum strength, ductility, and energy dissipation. The predicted curves with modeling parameters in ASCE41-13 were conservative for test results of lap spliced tie and U-shaped tie specimens since plastic behavior after flexural yielding could not be considered. For economical design, ASCE41-13 should be revised with various test results of tie details.

Numerical Model to Evaluate Resistance against Direct Shear Failure and Bending Failure of Reinforced Concrete Members Subjected to Blast Loading (폭발하중을 받는 철근콘크리트 부재의 직접전단 파괴 및 휨 파괴 저항성능 평가를 위한 수치해석 모델 개발)

  • Ju, Seok Jun;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.393-401
    • /
    • 2021
  • In this paper, we proposed a numerical model based on moment-curvature, to evaluate the resistance of reinforced concrete (RC) members subjected to blast loading. To consider the direct shear failure mode, we introduced a dimensionless spring element based on the empirical direct shear stress-slip relation. Based on the dynamic increase factor equations for materials, new dynamic increase factor equations were constructed in terms of the curvature rate for the section which could be directly applied to the moment-curvature relation. Additionally, equivalent bending stiffness was introduced in the plastic hinge region to consider the effect of bond-slip. To verify the validity of the proposed model, a comparative study was conducted against the experimental results, and the superiority of this numerical model was confirmed through comparison with the analytical results of the single-degree of freedom model. Pressure-impulse (P-I) diagrams were produced to evaluate the resistance of members against bending failure and direct shear failure, and additional parametric studies were conducted.

Punching Shear Strength of Slab-Column Interior Connection Considering Anchorage Performance of Shear Reinforcements (전단보강재의 정착성능을 고려한 슬래브-기둥 내부접합부의 뚫림전단강도)

  • Jung, Hyung-Suk;Choi, Hyun-Ki;Chung, Joo-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Flat plate slab is cost-efficient structural system widely used in high rise building, apartment and parking garages. But flat plate-column connections are so weak against punching shear failure that it may cause collapse of overall structure. In this study, spiral type shear reinforcement which increases the shear strength and ductility of the plate-column connection and has good workability was proposed. And experimental test was performed to verify the punching shear capacity of spiral type shear reinforcement. The current code does not accurately estimate the punching shear strength of slab-column connection with shear reinforcement because slab is so slender that punching failure may occurred before shear reinforcement reached yield stress. Therefore modified equation of ACI code for punching shear strength was proposed base on finite element analysis using LUSAS program, and data analysis from CEB-FIP database.

Effect of Crack Control Strips at Opening Corners on the Strength and Crack Propagation of Downsized Reinforced Concrete Walls (축소 철근콘크리트 벽체의 내력과 균열진전에 대한 개구부모서리 균열제어 띠의 영향)

  • Wang Hye-Rin;Yang Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.40-47
    • /
    • 2022
  • The present study aimed to examine the effectiveness of different techniques for controlling the diagonal cracks at the corners of openings on the strength, deformation, and crack propagation in reinforced concrete walls. The crack control strip proposed in this study, the conventional diagonal steel reinforcing bars, and stress-dispersion curved plates were investigated for controlling the diagonal cracks at the opening corners. An additional crack self-healing function was also considered for the crack control strip. To evaluate the volume change ratio and crack width propagation around the opening, downsized wall specimens with a opening were tested under the diagonal shear force at the opening corner. Test result showed that the proposed crack control strip was more effective in reducing the volume change and controlling the crack width around the opening when compared to the conventional previous methods. The crack control strip with crack healing feature displayed the superior performance in improving the strength of the wall and reducing the crack width while healing cracks occurred in the previous tests.

Stiffness Degradation Induced by Seismic Loading on a RC Shear Wall (지진하중에 의한 철근콘크리트 전단벽의 강성 저하에 관한 연구)

  • Lee, Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.48-54
    • /
    • 2022
  • This research describes a quantitative procedure used to estimate the effect of concrete cracking on stiffness degradation of concrete shear walls and provides analytical references for the seismic design of concrete shear walls. As preliminary research on the seismic response of concrete shear walls, nonlinear transient analysis was performed with commercial FE software. The study presents the nonlinear time history analysis results in terms of concrete damage and cracking behavior induced by seismic input motions. By varying the input motions, concrete strength and shear wall thickness, the seismic responses of a shear wall were examined with nonlinear time history analysis, and the progressive cracking behavior and corresponding hysteresis loop were described. Based on the analysis results, frequency and stiffness degradation of the shear wall from progressive concrete damage and cracking were captured with respect to the seismic levels. The results of this study suggest that stiffness degradation from concrete cracking should be appropriately considered when determining the seismic capacity of RC shear wall structures.

Effect of Nonlinear Analysis Procedures for Seismic Responses of Reinforced Concrete Wall Structure (철근콘크리트 벽체구조물의 지진응답에 대한 비선형 해석기법의 영향)

  • Song, Jong-Keol;Jang, Dong-Hui;Chung, Yeong-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.659-675
    • /
    • 2006
  • Recently, significant progress has been made in performance-based engineering methods that rely mainly on nonlinear static seismic analysis procedures. The Capacity Spectrum Method (CSM) and the Displacement Coefficient Method (DCM) are the representative nonlinear static seismic analysis procedures. In order to evaluate the applicability of the procedures to the seismic evaluation and design process of new and existing structures, the accuracy of both CSM and DCM should be evaluated in advance. The accuracy of seismic responses by the nonlinear static procedures is evaluated in comparison with the shaking table test results for the structural wall specimen subjected to the far field and near field earthquakes. Also conducted are comparative studies where the shaking table test results are compared with those from nonlinear dynamic analysis procedures, i.e., Single-Degree-of-Freedom (SDOF), equivalent SDOF and Multi-Degree-of-Freedom (MDOF) systems.